Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 12933-12940, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591960

RESUMO

Electrified solid-liquid interfaces (SLIs) are extremely complex and dynamic, affecting both the dynamics and selectivity of reaction pathways at electrochemical interfaces. Enabling access to the structure and arrangement of interfacial water in situ with nanoscale resolution is essential to develop efficient electrocatalysts. Here, we probe the SLI energy of a polycrystalline Au(111) electrode in a neutral aqueous electrolyte through in situ electrochemical atomic force microscopy. We acquire potential-dependent maps of the local interfacial adhesion forces, which we associate with the formation energy of the electric double layer. We observe nanoscale inhomogeneities of interfacial adhesion force across the entire map area, indicating local differences in the ordering of the solvent/ions at the interface. Anion adsorption has a clear influence on the observed interfacial adhesion forces. Strikingly, the adhesion forces exhibit potential-dependent hysteresis, which depends on the local gold grain curvature. Our findings on a model electrode extend the use of scanning probe microscopy to gain insights into the local molecular arrangement of the SLI in situ, which can be extended to other electrocatalysts.

2.
ACS Appl Opt Mater ; 2(3): 508-516, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38544699

RESUMO

A scalable selective-area electrochemical method is reported for the fabrication of interconnected metal nanostructures. In this work, the fabrication of silver nanowire grids for the application of transparent electrodes is explored. The presented method is based on a through-the-mask electrodeposition method, where the mask is made by using substrate conformal imprint lithography. We find that the nucleation density of the silver nanoparticles is the key parameter for successful homogeneous void-free filling of the template. We independently controlled the density of the silver nuclei and their growth by using a double potential pulse. The silver nanowire grids show high transmission (95.9%) and low sheet resistance (as low as 3.7 Ω/sq), resulting in a superior figure of merit (FoM). Due to the bottom-up nature of this technique, arbitrarily high aspect ratio nanowires can be achieved, therefore decreasing the sheet resistance without affecting transmittance and carrier collection. The presented method can be generalized to the large-area nanofabrication of any well-defined nanostructure design of any metal transparent electrode for multiple applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA