Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biodegradation ; 35(4): 451-468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38289541

RESUMO

Microplastics pose significant challenges to ecosystems and organisms. They can be ingested by marine and terrestrial species, leading to potential health risks and ecological disruptions. This study aims to address the urgent need for effective remediation strategies by focusing on the biodegradation of microplastics, specifically polyvinyl chloride (PVC) derivatives, using the bacterial strain Bacillus albus. The study provides a comprehensive background on the accumulation of noxious substances in the environment and the importance of harnessing biodegradation as an eco-friendly method for pollutant elimination. The specific objective is to investigate the enzymatic capabilities of Bacillus albus, particularly the alpha/beta hydrolases (ABH), in degrading microplastics. To achieve this, in-silico studies were conducted, including analysis of the ABH protein sequence and its interaction with potential inhibitors targeting PVC derivatives. Docking scores of - 7.2 kcal/mol were obtained to evaluate the efficacy of the interactions. The study demonstrates the promising bioremediation prospects of Bacillus albus for microplastics, highlighting its potential as a key player in addressing microplastic pollution. The findings underscore the urgent need for further experimental validation and practical implementation of Bacillus albus in environmental remediation strategies.


Assuntos
Bacillus , Biodegradação Ambiental , Cloreto de Polivinila , Bacillus/enzimologia , Bacillus/metabolismo , Cloreto de Polivinila/química , Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Microplásticos/metabolismo , Simulação de Acoplamento Molecular
2.
Saudi Pharm J ; 32(1): 101895, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226352

RESUMO

Scientific evidences reported the deleterious effect of cigarette smoking or passive smoking on brain health particularly cognitive functions, blood-brain barrier (BBB) permeability, up-regulation of inflammatory cascades, and depletion of the antioxidant system. These combined effects become more progressive in the events of stroke, traumatic brain injury (TBI), and many other neurodegenerative diseases. In the current study, we investigated the long-term administered therapeutic potential of quercetin in ameliorating the deleterious neurobiological consequences of chronic tobacco smoke exposure in TBI mice. After exposure to 21 days of cigarette smoke and treatment with 50 mg/kg of quercetin, C57BL/6 mice were challenged for the induction of TBI by the weight drop method. Subsequently, a battery of behavioral tests and immunohistochemical analyses revealed the beneficial effect of quercetin on the locomotive and cognitive function of TBI + smoked group mice (p < 0.05 vs control sham). Immunohistochemistry analysis (Nrf2, HO-1, NFkB, caspase 3) demonstrated a marked protection after 21 days of quercetin treatment in the chronic tobacco smoking group possibly by up-regulation of antioxidant pathways, and decreased apoptosis. In conclusion, our findings support the therapeutic effectiveness of quercetin in partly protecting the central neurological functions that become aberrantly impaired in combined habitual cigarette-smoking individuals impacted with TBI.

3.
Saudi Pharm J ; 32(1): 101910, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111669

RESUMO

Ulcerative colitis (UC) is an inflammatory condition of colon characterized by severe damage to the innermost colon tissues. A number of studies described the use of medication delivery systems based on natural polymers like polysaccharides for the purpose of reaching the colon. In this research, polymer-based mesalamine delayed-release granules (DRGs) were tested for their antioxidant and anti-inflammatory efficacy against UC. Chitosan (C), pectin (P), and pectin-chitosan (PC) mesalamine (M) DRGs were prepared and characterized. Data revealed satisfactory compatibility, flow, packing properties, drug release pattern, and delayed drug release by DRGs. Wistar rats were treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS) (100 mg/kg) via rectal administration. Mesalamine and mesalamine DRGs (50 mg/kg) were administered orally separately for 14 days. Biomarkers of oxidative stress, inflammation, hematological tests, colon profile, and histopathology were performed. The findings demonstrated the good efficacy of the polysaccharides in delivering mesalamine to colon. Mesalamine and mesalamine DRGs based on various polymers showed significant antioxidant and anti-inflammatory effects in rats with UC. Mesalamine granules significantly attenuated colon lipid peroxidation, nitrites, myeloperoxidase activity, and interleukin-1ß levels, and improved anti-oxidants (GSH, SOD). Data showed upregulation of Nrf2 activity by mesalamine granules with CM-DRGs showing maximum effect. Mesalamine and different polymer-based mesalamine DRGs significantly attenuated TNBS-induced decline in body weight, ulcer severity, and colon damage. CM-DRGs showed the most pronounced ameliorative effect on colon and hematology parameters via anti-oxidant and anti-inflammatory activities. Chitosan can be used as a carrier for oral colon delivery of mesalamine in DRG formulation for enhanced therapeutic efficacy in UC.

4.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003408

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.


Assuntos
Transtorno do Espectro Autista , Interleucina-10 , Humanos , Camundongos , Animais , Interleucina-10/farmacologia , Chumbo/toxicidade , Transtorno do Espectro Autista/induzido quimicamente , Interleucina-9/farmacologia , Transdução de Sinais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Mensageiro , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047547

RESUMO

Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.


Assuntos
Transtorno do Espectro Autista , Interleucina-17 , Camundongos , Animais , Interleucina-17/metabolismo , Cádmio/toxicidade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Necrose Tumoral alfa/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transtorno do Espectro Autista/metabolismo , RNA Mensageiro/metabolismo , Modelos Animais de Doenças
6.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894952

RESUMO

Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-ß1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-ß1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-ß1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Receptores Histamínicos H4 , Fator de Crescimento Transformador beta1 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Interleucina-17/metabolismo , Interleucina-9 , Esclerose Múltipla/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Fatores de Transcrição Forkhead/genética , Camundongos Endogâmicos C57BL
7.
Saudi Pharm J ; 31(12): 101864, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028211

RESUMO

The goal of the current investigation was to develop a non-pressurized liquid bandage to promote the healing of wounds by using silver sulfadiazine. A three-factor three level box-behnken statistical design was employed to optimize the drug-loaded liquid bandage. Film-forming liquid bandage was developed by using ethyl-cellulose, dibutyl sebacate, and glycerol. For optimization, ethyl cellulose, dibutyl sebacate, and isopropyl myristate were taken as independent variables while tensile strength, water vapor absorption value, and drying time were taken as dependent variables. The film-forming liquid bandage was evaluated for various parameters like tensile strength, water vapor absorption value, drying time, viscosity, pH, in-vitro drug release studies, in-vivo wound healing studies, and stability studies. The optimized formulation was found with the tensile strength of 68.24 ± 0.24 MPa, water vapor absorption value of 2.00 ± 0.25 %, drying time of 1.75 ± 0.14 min, viscosity of 60 ± 0.5 cPs, pH of 6.0 ± 0.5 and good physicochemical properties with satisfactory film-forming ability. The in-vitro study shows that the release of test formulations was better than the marketed formulation. After 6 h of study, the liquid bandage and marketed formulation showed 41.02 % and 29.32 % of drug release respectively. Significant results were obtained for the in-vivo wound healing studies. Upon comparison with the control group (2.61 mm) and marketed formulation (1.44 mm), rats treated with the optimized formulation exhibited a noticeable improvement in wound contraction (0.8 mm). The liquid bandage after three months of stability testing was found to be stable with optimum. The film-forming liquid bandage was found to be an effective alternative to conventional topical preparations as it develops a thin polymeric layer on the wound and the skin around it and improves comfort for the patient by protecting the wound from external factors and physical harm.

8.
J Pharmacol Exp Ther ; 379(3): 260-269, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663677

RESUMO

Opioids play crucial roles in the regulation of many important brain functions including pain, memory, and neurogenesis. Activation of opioid receptors is reported to have neuroprotective effects after ischemic reperfusion injury. The objective of this study was to understand the role of biphalin and nociceptin, opioid receptor agonists, on blood-brain barrier (BBB) integrity during ischemic stroke. In this study, we aimed to measure the effect of biphalin and nociceptin on astrocytic glutamate uptake and on expression of excitatory amino acid transporter to study the indirect role of astrocytes on opioid receptor-mediated BBB protection during in vitro stroke conditions. We used mouse brain endothelial cells (bEnd.3) and primary astrocytes as an in vitro BBB model. Restrictive BBB properties were evaluated by measuring [14C] sucrose paracellular permeability and the redistribution of the tight junction proteins. The protective effect of biphalin and nociceptin on BBB integrity was assessed after exposing cells to oxygen glucose deprivation (OGD) and glutamate. It was observed that combined stress (2 mM glutamate and 2 hours of OGD) significantly reduced glutamate uptake by astrocytes; however, biphalin and nociceptin treatment increased glutamate uptake in primary astrocytes. This suggests a role of increased astrocytic buffering capacity in opioid-meditated protection of the BBB during ischemic stroke. It was also found that the combined stress significantly increased [14C] sucrose paracellular permeability in an in vitro BBB model. Biphalin and nociceptin treatment attenuated the effect of the combined stress, which was reversed by the opioid receptor antagonists, suggesting the role of opioid receptors in biphalin and nociception's BBB modulatory activity. SIGNIFICANT STATEMENT: There is an unmet need for discovering new efficacious therapeutic agents to offset the deleterious effects of ischemic stroke. Given the confirmed roles of opioid receptors in the regulation of central nervous system functions, opioid receptor agonists have been studied as potential neuroprotective options in ischemic conditions. This study adds to the knowledge about the cerebrovascular protective effects of opioid receptor agonists and provides insight about the mechanism of action of these agents.


Assuntos
Analgésicos Opioides/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encefalinas/farmacologia , Ácido Glutâmico/metabolismo , Peptídeos Opioides/farmacologia , Analgésicos/farmacologia , Animais , Animais Recém-Nascidos , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Camundongos , Fármacos Neuroprotetores/farmacologia , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Nociceptina
9.
J Thromb Thrombolysis ; 50(2): 361-370, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32358665

RESUMO

Rivaroxaban (RIVA) inhibits factor Xa and exhibits antithrombotic and anti-inflammatory activities by inhibiting several cellular signaling molecules. Sunitinib (SUN) is FDA approved first-line drug for metastatic renal cancers and advanced cancerous states of gastrointestinal tract. Present hypothesis was aimed to examine the nephroprotective potential of RIVA in SUN-induced nephrotoxicity, mediated through the inhibition of oxidative stress-induced apoptosis and inflammation, via the TNF-α/NFk-B signaling pathways. Wistar rats 200-250 g were selected and divided randomely in 5 groups (n = 6): Group 1 kept as normal control; Group 2 as disease control and exposed to SUN 50 mg/kg thrice-weekly upto 21 days; Groups 3 and 4, were treatment groups and administered SUN 50 mg/kg thrice-weekly as of group 2 and treated with RIVA 5 and 10 mg/kg/daily for 21 days, respectively; and Group 5 fed with RIVA alone (10 mg/kg/daily for 21 days). Serum was separated from blood to estimate serum biochemical parameters and kidney tissues were collected to estimate antioxidant enzyme, mRNA and protein expression. SUN exposure significantly elevated levels of creatinine, urea, uric acid, blood urea nitrogen, albumin, and bilirubin, and decreased serum magnesium and iron levels. Malondialdehyde and catalase levels were significantly increased and glutathione and glutathione reductase levels were significantly decreased. Intracellular levels of caspase-3 and TNF-α were significantly increased; RIVA treatment restored the altered levels. In SUN-exposed animals, western blotting revealed significantly elevated NFk-B, IL-17, and MCP-1 expression, and IKBα levels were significantly downregulated; RIVA restored these levels to normal values.RIVA treatment significantly restored the apoptotic and inflammatory parameters in SUN-damaged renal tissues.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Glomerulonefrite/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Rivaroxabana/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Rim/metabolismo , Rim/patologia , Masculino , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sunitinibe
10.
Am J Physiol Cell Physiol ; 316(1): C2-C15, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207783

RESUMO

Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.


Assuntos
Isquemia Encefálica/metabolismo , Diabetes Mellitus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Acoplamento Neurovascular/fisiologia , Fumar/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Diabetes Mellitus/patologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Transporte de Íons/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Fumar/patologia , Acidente Vascular Cerebral/patologia
11.
J Infect Public Health ; 17(5): 748-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518681

RESUMO

BACKGROUND: Long COVID has appeared as a significant global health issue and is an extra burden to the healthcare system. It affects a considerable number of people throughout the globe. However, substantial research gaps have been noted in understanding the mechanism and genomic landscape during the long COVID infection. A study has aimed to identify the differentially expressed genes (DEGs) in long COVID patients to fill the gap. METHODS: We used the RNA-seq GEO dataset acquired through the GPL20301 Illumina HiSeq 4000 platform. The dataset contains 36 human samples derived from PBMC (Peripheral blood mononuclear cells). Thirty-six human samples contain 13 non-long COVID individuals' samples and 23 long COVID individuals' samples, considered the first direction analysis. Here, we performed two-direction analyses. In the second direction analysis, we divided the dataset gender-wise into four groups: the non-long COVID male group, the long COVID male group, the non-long COVID female group, and the long COVID female group. RESULTS: In the first analysis, we found no gene expression. In the second analysis, we identified 250 DEGs. During the DEG profile analysis of the non-long COVID male group and the long COVID male group, we found three upregulated genes: IGHG2, IGHG4, and MIR8071-2. Similarly, the analysis of the non-long COVID female group and the long COVID female group reveals eight top-ranking genes. It also indicates the gender biases of differentially expressed genes among long COVID individuals. We found several DEGs involved in PPI and co-expression network formation. Similarly, cluster enrichment and gene list enrichment analysis were performed, suggesting several genes are involved in different biological pathways or processes. CONCLUSIONS: This study will help better understand the gene expression landscape in long COVID. However, it might help the discovery and development of therapeutics for long COVID.


Assuntos
COVID-19 , Perfilação da Expressão Gênica , Humanos , Masculino , Feminino , Leucócitos Mononucleares , Síndrome de COVID-19 Pós-Aguda , COVID-19/genética , Expressão Gênica , Viés
12.
Sci Rep ; 14(1): 767, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191579

RESUMO

More than 95% of patients fall victim to primary amoebic meningoencephalitis (PAM), a fatal disease attacking the central nervous system. Naegleria fowleri, a brain-eating microorganism, is PAM's most well-known pathogenic ameboflagellate. Despite the use of antibiotics, the fatality rate continues to rise as no clinical trials have been conducted against this disease. To address this, we mined the UniProt database for pathogenic proteins and selected assumed epitopes to create an mRNA-based vaccine. We identified thirty B-cell and T-cell epitopes for the vaccine candidate. These epitopes, secretion boosters, subcellular trafficking structures, and linkers were used to construct the vaccine candidate. Through predictive modeling and confirmation via the Ramachandran plot (with a quality factor of 92.22), we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: 0.394, instability index: 38.99, antigenicity: 0.8). The theoretical model of immunological simulations indicated favorable responses from both innate and adaptive immune cells, with memory cells expected to remain active for up to 350 days post-vaccination, while the antigen was eliminated from the body within 24 h. Notably, strong interactions were observed between the vaccine construct and TLR-4 (- 11.9 kcal/mol) and TLR-3 (- 18.2 kcal/mol).


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Vacinas de mRNA , Naegleria fowleri/genética , Infecções Protozoárias do Sistema Nervoso Central/prevenção & controle , Epitopos de Linfócito T/genética , RNA Mensageiro/genética
13.
Sci Rep ; 14(1): 1529, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233440

RESUMO

There is no FDA-approved drug for neurological disorders like spinocerebellar ataxia type 3. CAG repeats mutation in the ATXN3 gene, causing spinocerebellar ataxia type 3 disease. Symptoms include sleep cycle disturbance, neurophysiological abnormalities, autonomic dysfunctions, and depression. This research focuses on drug discovery against ATXN3 using phytochemicals of different plants. Three phytochemical compounds (flavonoids, diterpenoids, and alkaloids) were used as potential drug candidates and screened against the ATXN3 protein. The 3D structure of ATXN3 protein and phytochemicals were retrieved and validation of the protein was 98.1% Rama favored. The protein binding sites were identified for the interaction by CASTp. ADMET was utilized for the pre-clinical analysis, including solubility, permeability, drug likeliness and toxicity, and chamanetin passed all the ADMET properties to become a lead drug candidate. Boiled egg analysis attested that the ligand could cross the gastrointestinal tract. Pharmacophore analysis showed that chamanetin has many hydrogen acceptors and donors which can form interaction bonds with the receptor proteins. Chamanetin passed all the screening analyses, having good absorption, no violation of Lipinski's rule, nontoxic properties, and good pharmacophore properties. Chamanetin was one of the lead compounds with a - 7.2 kcal/mol binding affinity after screening the phytochemicals. The stimulation of ATXN3 showed stability after 20 ns of interaction in an overall 50 ns MD simulation. Chamanetin (Flavonoid) was predicted to be highly active against ATXN3 with good drug-like properties. In-silico active drug against ATXN3 from a plant source and good pharmacokinetics parameters would be excellent drug therapy for SC3, such as flavonoids (Chamanetin).


Assuntos
Doença de Machado-Joseph , Humanos , Ataxina-3/genética , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Simulação de Acoplamento Molecular
14.
Artigo em Inglês | MEDLINE | ID: mdl-38898802

RESUMO

Bimetallic nanoparticles, particularly Ag/Zn bimetallic nanoparticles, have gained increasing attention due to their unique properties, making them suitable for a variety of applications such as catalysis, water treatment, and environmental remediation. This study aimed to elucidate the use of bimetallic nanoparticles of Ag/Zn as an alternative to resistant pesticides for pest control. Furthermore, this research demonstrates that BNPs can target specific pollutants and degrade them through various mechanisms. BNP docking with the Nilaparvata lugens cytochrome P450 (CYP6ER1) protein exhibited the lowest binding energy of -7.5 kcal/mol. The cell permeability analysis of BNP in plant cells reveals that the BNP has 0 % permeability towards any cell at -10 kcal/mol energy, which is the lowest free energy translocation pathway. The harmful leftover residues of the pesticides have a higher chance of degradability in case of interaction with BNP validated by chemical-chemical interaction analysis. Additionally, MDCK permeability coefficient of small molecules based on the regression model was calculated for BNP which authenticated the efficiency of BNP. Moreover, Swiss ADMET simulated absorption using a boiled egg model with no blood-brain barrier and gastrointestinal crossing for the expected BNP molecule has been observed. Significantly, the findings indicate that employing bimetallic nanoparticles like Ag/Zn is a crucial strategy for bioremediation because they proficiently decompose pesticides while posing no risk to humans. Our results will facilitate the design of novel BNPs materials for environmental remediation and pest control ensuring human health safety that are predicated on bimetallic nanoparticles.

15.
Acta Parasitol ; 69(1): 483-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194049

RESUMO

BACKGROUND: Skeeter syndrome is a severe local allergic response to mosquito bites that is accompanied by considerable inflammation and, in some cases, a systemic response like fever. People with the syndrome develop serious allergies, ranging from rashes to anaphylaxis or shock. The few available studies on mosquito venom immunotherapy have utilized whole-body preparations and small sample sizes. Still, owing to their little success, vaccination remains a promising alternative as well as a permanent solution for infections like Skeeter's. METHODS: This study, therefore, illustrated the construction of an epitope-based vaccine candidate against Skeeter Syndrome using established immunoinformatic techniques. We selected three species of mosquitoes, Anopheles melas, Anopheles funestus, and Aedes aegypti, to derive salivary antigens usually found in mosquito bites. Our construct was also supplemented with bacterial epitopes known to elicit a strong TH1 response and suppress TH2 stimulation that is predicted to reduce hypersensitivity against the bites. RESULTS: A quality factor of 98.9496, instability index of 38.55, aliphatic index of 79.42, solubility of 0.934747, and GRAVY score of -0.02 indicated the structural (tertiary and secondary) stability, thermostability, solubility, and hydrophilicity of the construct, respectively. The designed Aedes-Anopheles vaccine (AAV) candidate was predicted to be flexible and less prone to deformability with an eigenvalue of 1.5911e-9 and perfected the human immune response against Skeeter (hypersensitivity) and many mosquito-associated diseases as we noted the production of 30,000 Th1 cells per mm3 with little (insignificant production of Th2 cells. The designed vaccine also revealed stable interactions with the pattern recognition receptors of the host. The TLR2/vaccine complex interacted with a free energy of - 1069.2 kcal/mol with 26 interactions, whereas the NLRP3/vaccine complex interacted with a free energy of - 1081.2 kcal/mol with 16 molecular interactions. CONCLUSION: Although being a pure in-silico study, the in-depth analysis performed herein speaks volumes of the potency of the designed vaccine candidate predicting that the proposition can withstand rigorous in-vitro and in-vivo clinical trials and may proceed to become the first preventative immunotherapy against mosquito bite allergy.


Assuntos
Aedes , Anopheles , Epitopos , Hipersensibilidade , Mordeduras e Picadas de Insetos , Animais , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/prevenção & controle , Anopheles/imunologia , Aedes/imunologia , Epitopos/imunologia , Hipersensibilidade/prevenção & controle , Hipersensibilidade/imunologia , Vacinas/imunologia , Humanos
16.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38812301

RESUMO

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Assuntos
Vacinas Bacterianas , Biologia Computacional , Listeria monocytogenes , Listeriose , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Listeria monocytogenes/imunologia , Vacinas Bacterianas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Listeriose/prevenção & controle , Listeriose/imunologia , Listeriose/microbiologia , Biologia Computacional/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Humanos , Epitopos/imunologia , Simulação de Dinâmica Molecular , Animais , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/imunologia , Imunoinformática
17.
Sci Rep ; 14(1): 8563, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609487

RESUMO

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Assuntos
Cólera , Infecções Urinárias , Vibrio , Humanos , Proteus mirabilis/genética , Cádmio/toxicidade , Sistemas CRISPR-Cas/genética , RNA Ribossômico 16S , Águas Residuárias , RNA Guia de Sistemas CRISPR-Cas , Vibrio/genética
18.
Front Immunol ; 15: 1380732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690283

RESUMO

Haemophilus parainfluenzae is a Gram-negative opportunist pathogen within the mucus of the nose and mouth without significant symptoms and has an ability to cause various infections ranging from ear, eye, and sinus to pneumonia. A concerning development is the increasing resistance of H. parainfluenzae to beta-lactam antibiotics, with the potential to cause dental infections or abscesses. The principal objective of this investigation is to utilize bioinformatics and immuno-informatic methodologies in the development of a candidate multi-epitope Vaccine. The investigation focuses on identifying potential epitopes for both B cells (B lymphocytes) and T cells (helper T lymphocytes and cytotoxic T lymphocytes) based on high non-toxic and non-allergenic characteristics. The selection process involves identifying human leukocyte antigen alleles demonstrating strong associations with recognized antigenic and overlapping epitopes. Notably, the chosen alleles aim to provide coverage for 90% of the global population. Multi-epitope constructs were designed by using suitable linker sequences. To enhance the immunological potential, an adjuvant sequence was incorporated using the EAAAK linker. The final vaccine construct, comprising 344 amino acids, was achieved after the addition of adjuvants and linkers. This multi-epitope Vaccine demonstrates notable antigenicity and possesses favorable physiochemical characteristics. The three-dimensional conformation underwent modeling and refinement, validated through in-silico methods. Additionally, a protein-protein molecular docking analysis was conducted to predict effective binding poses between the multi-epitope Vaccine and the Toll-like receptor 4 protein. The Molecular Dynamics (MD) investigation of the docked TLR4-vaccine complex demonstrated consistent stability over the simulation period, primarily attributed to electrostatic energy. The docked complex displayed minimal deformation and enhanced rigidity in the motion of residues during the dynamic simulation. Furthermore, codon translational optimization and computational cloning was performed to ensure the reliability and proper expression of the multi-Epitope Vaccine. It is crucial to emphasize that despite these computational validations, experimental research in the laboratory is imperative to demonstrate the immunogenicity and protective efficacy of the developed vaccine. This would involve practical assessments to ascertain the real-world effectiveness of the multi-epitope Vaccine.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Epitopos de Linfócito T/imunologia , Biologia Computacional/métodos , Epitopos de Linfócito B/imunologia , Simulação de Acoplamento Molecular , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Desenvolvimento de Vacinas
19.
J Neuroimmunol ; 386: 578253, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064869

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Cádmio/toxicidade , Cádmio/metabolismo , NF-kappa B/metabolismo , Encéfalo/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
20.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399224

RESUMO

Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs) containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study) and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug solubility and release when compared with pure FBP. After in vitro studies, it was observed that the analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA