Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Planta ; 247(1): 27-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29119269

RESUMO

MAIN CONCLUSION: Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al3+) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.


Assuntos
Alumínio/toxicidade , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Enxofre/metabolismo , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo
2.
Physiol Plant ; 160(1): 46-64, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27943328

RESUMO

Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-BBE irradiance doses of 0, 0.07 and 0.19 W m-2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy.


Assuntos
Mirtilos Azuis (Planta)/metabolismo , Folhas de Planta/metabolismo , Raios Ultravioleta , Antioxidantes/metabolismo , Mirtilos Azuis (Planta)/efeitos da radiação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação
3.
Molecules ; 21(6)2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27258240

RESUMO

Methyl jasmonate (MeJA) is a plant growth regulator belonging to the jasmonate family. It plays an important role as a possible airborne signaling molecule mediating intra- and inter-plant communications and modulating plant defense responses, including antioxidant systems. Most assessments of this compound have dealt with post-harvest fruit applications, demonstrating induced plant resistance against the detrimental impacts of storage (chilling injuries and pathogen attacks), enhancing secondary metabolites and antioxidant activity. On the other hand, the interactions between MeJA and other compounds or technological tools for enhancing antioxidant capacity and quality of fruits were also reviewed. The pleiotropic effects of MeJA have raisen numerous as-yet unanswered questions about its mode of action. The aim of this review was endeavored to clarify the role of MeJA on improving pre- and post-harvest fresh fruit quality and health properties. Interestingly, the influence of MeJA on human health will be also discussed.


Assuntos
Acetatos/metabolismo , Antioxidantes/metabolismo , Ciclopentanos/metabolismo , Frutas/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Humanos , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/biossíntese
4.
Mol Biol Rep ; 39(3): 2069-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21660471

RESUMO

Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.


Assuntos
Alumínio/toxicidade , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Redes e Vias Metabólicas/imunologia , Doenças das Plantas/induzido quimicamente , Plantas , Solo/química , Alumínio/farmacocinética , Proteínas de Arabidopsis/genética , Citoplasma/metabolismo , Resistência à Doença/genética , Sequestradores de Radicais Livres/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos/genética , Estresse Oxidativo/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo
5.
Plant Physiol Biochem ; 158: 454-465, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33250324

RESUMO

In acid soils, manganese (Mn) concentration increases, becoming toxic to plants. Mn toxicity differentially affects physiological processes in highbush blueberry (Vaccinium corymbosum L.) cultivars. However, the mechanisms involved in Mn toxicity of the new and traditionally established cultivars are unknown. To understand Mn toxicity mechanisms, four traditionally established (Legacy, Brigitta, Duke, and Star) cultivars and two recently introduced to Chile (Camellia and Cargo) were grown under hydroponic conditions subjected to control Mn (2 µM) and Mn toxicity (1000 µM). Physiological, biochemical, and molecular parameters were evaluated at 0, 7, 14, and 21 days. We found that the relative growth rate was reduced in almost all blueberry cultivars under Mn toxicity, except Camellia, with Star being the most affected. The photosynthetic parameters were reduced only in Star by Mn treatment. Leaf Mn concentrations increased in all cultivars, exhibiting the lowest levels in Camellia and Cargo. Brigitta and Duke exhibited higher ß-carotene levels, while Cargo exhibited a reduction under toxic Mn. In Legacy, lutein levels increased under Mn toxicity. Traditionally established cultivars exhibited higher antioxidant activity than the new cultivars under Mn toxicity. The Legacy and Duke cultivars increased VcMTP4 expression with Mn exposure time. A multivariate analysis separated Legacy and Duke from Camellia; Star and Cargo; and Brigitta. Our study demonstrated that Mn toxicity differentially affects physiological, biochemical, and molecular features in the new and traditionally established cultivars, with Legacy, Duke, Camellia, and Cargo as the Mn-resistant cultivars differing in their Mn-resistance mechanisms and Star as the Mn-sensitive cultivar.


Assuntos
Mirtilos Azuis (Planta)/efeitos dos fármacos , Manganês/toxicidade , Mirtilos Azuis (Planta)/classificação , Mirtilos Azuis (Planta)/fisiologia , Chile , Regulação da Expressão Gênica de Plantas , Folhas de Planta
6.
Antioxidants (Basel) ; 9(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31948009

RESUMO

Gastric cancer is the third main cause of cancerous tumors in humans in Chile. It is well-accepted that a diet rich in antioxidant plants could help in fighting cancer. Blueberry is a fruit crop with a high content of antioxidants. Methyl jasmonate (MeJA) is a phytohormone involved in plant defenses under stress conditions. The exogenous application of MeJA can improve the antioxidant properties in plants. We studied in vitro and in vivo anticancer action on human gastric cancer (cell line AGS) and the antioxidant properties of extracts from blueberry plants untreated and treated with MeJA. The results demonstrated that leaf extracts displayed a higher inhibition of cancer cell viability as well as greater antioxidant properties compared to fruit extracts. Besides, MeJA applications to plants improved the antioxidant properties of leaf extracts (mainly anthocyanins), increasing their inhibition levels on cell viability and migration. It is noteworthy that leaf extract from MeJA-treated plants significantly decreased cancer cell migration and expression of gastric cancer-related proteins, mainly related to the mitogen-activating protein kinase (MAPK) pathway. Interestingly, in all cases the anticancer and antioxidant properties of leaf extracts were strongly related. Despite highlighted outcomes, in vivo results did not indicate significant differences in Helicobacter pylori colonization nor inflammation levels in Mongolian gerbils unfed and fed with blueberry leaf extract. Our findings demonstrated that MeJA increased antioxidant compounds, mainly anthocyanins, and decreased the viability and migration capacity of AGS cells. In addition, leaf extracts from MeJA-treated plants were also able to decrease the expression of gastric cancer-related proteins. Our outcomes also revealed that the anthocyanin-rich fraction of blueberry leaf extracts showed higher in vitro antiproliferative and anti-invasive effects than the crude leaf extracts. However, it is still uncertain whether the leaf extracts rich in anthocyanins of blueberry plants are capable of exerting a chemopreventive or chemoprotective effect against gastric cancer on an in vivo model.

7.
Physiol Plant ; 136(4): 426-36, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19470091

RESUMO

Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.


Assuntos
Desidratação/metabolismo , Magnoliopsida/microbiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Secas , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Nodulação , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Simbiose
8.
Tree Physiol ; 29(8): 1047-57, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19483186

RESUMO

Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Secas , Fagaceae/metabolismo , Fagaceae/microbiologia , Micorrizas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Biomassa , Contagem de Colônia Microbiana , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Micélio/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Solo/análise , Água
9.
Tree Physiol ; 29(5): 651-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19203980

RESUMO

Nothofagus dombeyi (Mirb.) Blume and Nothofagus nitida (Phil.) Krasser, two evergreens in the South Chilean forest, regenerate in open habitats and under the canopy, respectively. Both overtop the forest canopy when they are in the adult stage, suggesting that their photoprotective mechanisms differ in ontogenetic dynamics. We postulated that N. nitida, a shade-tolerant species increases its capacity to tolerate photoinhibitory conditions (low temperature and high irradiance) by thermal energy dissipation of excess energy during its transition from the seedling to the adult stage, whereas N. dombeyi, a shade-intolerant species, maintains a high capacity for photoprotection by thermal energy dissipation from the seedling to the adult stage. To test this hypothesis, the main photoprotective mechanisms in plants - the fast- and slow-relaxing components of thermal energy dissipation (NPQ, non-photochemical quenching) NPQ(F) and NPQ(S), respectively, and state transitions - were studied in seedlings and adults of both species grown in their natural habitats and in a common garden. In adults, NPQ(F) and NPQ(S) did not differ between species and seasons. The greatest differences in these parameters were observed in seedlings. The xanthophyll cycle was more active in N. dombeyi seedlings than in N. nitida seedlings at low temperature and high irradiance, consistent with a higher NPQ(F) in N. dombeyi. Under all study conditions, N. nitida seedlings had higher NPQ(S) than N. dombeyi seedlings. The state transition capability was higher in N. nitida seedlings than in N. dombeyi seedlings. Therefore, although (shade-intolerant) N. dombeyi was able to thermally dissipate the excess absorbed energy, under natural conditions its photochemical energy quenching was efficient in both developmental stages, decreasing its need for thermal dissipation. In contrast, the seedlings of N. nitida were more sensitive to photoinhibition than the adult trees, suggesting a change from shade-grown to sun-exposed phenotype from the seedling to the adult stage. These results help to explain the differences in the regeneration patterns of N. nitida and N. dombeyi and the presence of N. nitida adult stage in the upper canopy.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Estações do Ano , Luz Solar , Magnoliopsida/metabolismo , Magnoliopsida/efeitos da radiação , Pigmentos Biológicos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Especificidade da Espécie , Temperatura , Xantofilas/metabolismo
10.
Sci Rep ; 9(1): 11275, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375763

RESUMO

Aluminum (Al) toxicity is one of the major factors that limit the growth and production of crops in acid soils. Highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Al toxicity regarding root growth and photosynthetic performance were used. In this study, we compared the physiological and metabolic strategies to cope with Al toxicity among the highbush blueberry cultivars [two new ones (Camellia and Cargo) and three established ones (Brigitta (Al-resistant), Star and Duke)]. Aluminum concentration in roots and leaves increased in all cultivars after 24 and 48 h of exposure to Al, but less so in roots of cultivar Camellia and leaves of cultivar Cargo. These two cultivars displayed minor effects of Al exposure in terms of photosynthetic activity in comparison with the established cultivars. Furthermore, Cargo did not vary fluorescence parameters, whereas Camellia exhibited a decrease in effective quantum yield (ΦPSII) and electron transport rate (ETR) and a change in non-photochemical quenching (NPQ) and maximum quantum yield (Fv/Fm) under Al after 48 h. The Al treatment increased total phenols in leaves of Brigitta, Cargo, and Camellia, whereas antioxidant activity increased in Star and Cargo after 48 h. Aluminum exposure decreased malate concentration in roots of all cultivars, but no change was noted in fumarate concentration. The antioxidant activity correlated with photosynthetic performance and the total phenol concentration in the leaves of new cultivars exposed to Al, suggesting enhanced resistance in the short-term experiment. The principal component analysis separated the new from the established cultivars. In conclusion, the new cultivars appear to be more Al-resistant than the established ones, with Star being most Al-sensitive. Regarding the Al-resistance mechanisms of the new cultivars, it is suggested that Camellia could have a root Al-exclusion mechanism under Al toxicity. This mechanism could be explained by low Al concentration in roots, suggesting that this cultivar could exude organic acid, allowing to chelate Al in the rhizosphere. Nonetheless, further researches are needed to confirm this assumption.


Assuntos
Adaptação Fisiológica , Alumínio/toxicidade , Mirtilos Azuis (Planta)/fisiologia , Solo/química , Estresse Fisiológico , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
11.
Plant Physiol Biochem ; 144: 144-156, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31563755

RESUMO

We evaluated whether phosphorus (P) ameliorates manganese (Mn) excess harmful effects on photosynthetic performance, growth, oxidative stress, and antioxidants in ryegrass. Two perennial ryegrass genotypes, Banquet-II as Mn-resistant and One-50 as Mn-sensitive genotype, were growth under hydroponic conditions subjected to increased P (25, 50, 100, 200 and 400 µM), excess (750 µM) and sufficient Mn (2.4 µM) for 15 days. Growth rate, lipid peroxidation (LP), enzymatic and non-enzymatic antioxidants, photosynthetic parameters, and pigments were determined. Significant reduction of photosynthesis and growth in One-50 was observed under Mn-excess combined with low and adequate P, recovering under greater P-doses. The P concentration of both genotypes was enhanced towards increased P-supply, regardless of Mn treatments. Shoots Mn-concentration remained constant in both genotypes under Mn-excess, independently of P-levels; meanwhile, Banquet-II roots Mn-concentration increased 23% by P-supply. Furthermore, Banquet-II roots showed higher superoxide dismutase (SOD) activity than One-50, which increased towards the highest P dose under sufficient and excess of Mn. A high dose of phosphorus amendment alleviated Mn-toxicity in Mn-sensitive genotype (One-50). Besides, in the Mn-resistant genotype, enhanced plant performance is highlighted, explained by a high Mn-accumulation in roots and increased SOD activity, decreasing Mn translocation to shoots and therefore protecting the photosynthetic apparatus.


Assuntos
Lolium/efeitos dos fármacos , Lolium/metabolismo , Manganês/toxicidade , Fósforo/farmacologia , Regulação da Expressão Gênica de Plantas , Genótipo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
12.
Plant Physiol Biochem ; 130: 408-417, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30064097

RESUMO

The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Titânio/efeitos adversos
13.
Plant Physiol Biochem ; 118: 541-550, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28779619

RESUMO

UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds.


Assuntos
Antioxidantes/metabolismo , Mirtilos Azuis (Planta)/metabolismo , Flavonoides/biossíntese , Propanóis/metabolismo , Raios Ultravioleta
14.
Plant Physiol Biochem ; 118: 218-227, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28648998

RESUMO

We studied physiological traits and Mn transporter genes expression in ryegrass genotypes (One-50, Banquet-II, Halo-AR1 and Nui) under increasing Mn (2.4-750 µM) at short-term (8-24 h) in nutrient solution. An increment in Mn concentration occurred early in roots of all genotypes at increased Mn doses relative to control. Banquet-II and Nui roots showed the greatest Mn concentration at the highest Mn supply. Net photosynthesis (Pn) of Banquet-II and Halo-AR1 were not perturbed by Mn doses, whereas One-50 and Nui, decayed strongly at the highest Mn dose, concomitant with reduced total chlorophyll concentration. A high accumulation of Mn in roots together the maintained Pn under increased Mn doses in Banquet-II and Halo-AR1 suggest a higher Mn resistance of these genotypes. Stomatal conductance (gs) of all genotypes did not vary in presence of Mn. In roots of Banquet-II an augment of lipid peroxidation (LP) by Mn excess was observed earlier decreasing afterwards, being attenuated by the augment of the radical scavenging activity (RSA) and total phenols (TP) of this genotype. Mn concentration and LP in tissues of One-50 and Nui genotypes rose together, may be due to its Mn sensitivity. Differential expression of Mn transporter genes were found in the studied genotypes grown under increasing supplies of Mn, being MTP8.1 expressed in shoots and NRAMP2-like in roots. We concluded that Banquet-II showed greater Mn concentration associated to high roots NRAMP2-like gene expression, without changes in photosynthetic performance. Despite, this genotype showed an increase of LP at the first hours of Mn-excess, it was decreased by the RSA and TP. Halo-AR1 appears to be Mn-resistant in the short-term due to its photosynthetic performance was unchanged by Mn-toxicity, whilst One-50 and Nui were Mn-sensitive.


Assuntos
Proteínas de Transporte de Cátions/biossíntese , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Lolium/metabolismo , Manganês/metabolismo , Característica Quantitativa Herdável , Proteínas de Transporte de Cátions/genética , Lolium/genética
15.
Plant Physiol Biochem ; 113: 89-97, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28189921

RESUMO

We studied resistance to manganese (Mn) toxicity under acidic conditions and its relationship with nutrients such as calcium (Ca) and magnesium (Mg) in new perennial ryegrass (Lolium perenne L.) genotypes (One-50, Banquet-II and Halo-AR1) introduced in southern Chile, using the Nui genotype as the reference. Plants were grown in nutrient solution at increased Mn concentrations (0-750 µM) at pH 4.8, and physiological and biochemical features were determined. Under higher Mn concentration, the One-50 genotype had a significantly lower relative growth rate (RGR) of shoots and roots, whereas in the other cultivars this parameter did not change under variable Mn treatments. Increasing the Mn concentration led to an increased Mn concentration in roots and shoots, with Banquet-II and Halo-AR1 having higher Mn in roots than shoots. Shoot Mg and Ca concentrations in all genotypes (except Banquet-II) decreased concomitantly with increasing Mn applications. In contrast to the other genotypes, Banquet-II and Halo-AR1 maintained their net CO2 assimilation rate regardless of Mn treatment, whereas the chlorophyll concentration decreased in all genotypes with the exception of Banquet-II. In addition, lipid peroxidation in Banquet-II roots increased at 150 µM Mn, but decreased at higher Mn concentrations. This decrease was associated with an increase in antioxidant capacity as well as total phenol concentration. Banquet-II and Halo-AR1 appear to be the most Mn-resistant genotypes based on RGR and CO2 assimilation rate. In addition, Mn excess provoked a strong decrease in Ca and Mg concentrations in shoots of the Mn-sensitive genotype, whereas only slight variations in the Mn-resistant genotype were noted. When other evaluated parameters were taken into account, we concluded that among the perennial ryegrass genotypes introduced recently into southern Chile Banquet-II appears to be the most Mn-resistant, followed by Halo-AR1, with One-50 being the most sensitive.


Assuntos
Lolium/efeitos dos fármacos , Lolium/fisiologia , Manganês/toxicidade , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Antioxidantes/metabolismo , Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo
16.
Plant Physiol Biochem ; 107: 301-309, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27343876

RESUMO

The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment.


Assuntos
Antioxidantes/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/genética , Raios Ultravioleta , Mirtilos Azuis (Planta)/enzimologia , Sequestradores de Radicais Livres/metabolismo , Genes de Plantas , Genótipo , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos da radiação , Superóxido Dismutase/metabolismo
17.
Physiol Plant ; 115(4): 479-486, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12121453

RESUMO

Most of the ice and snow-free land in the Antarctic summer is found along the Antarctic Peninsula and adjacent islands and coastal areas of the continent. This is the area where most of the Antarctic vegetation is found. Mean air temperature tends to be above zero during the summer in parts of the Maritime Antarctic. The most commonly found photosynthetic organisms in the Maritime Antarctic and continental edge are lichens (around 380 species) and bryophytes (130 species). Only two vascular plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl., have been able to colonize some of the coastal areas. This low species diversity, compared with the Arctic, may be due to permanent low temperature and isolation from continental sources of propagules. The existence of these plants in such a permanent harsh environment makes them of particular interest for the study of adaptations to cold environments and mechanisms of cold resistance in plants. Among these adaptations are high freezing resistance, high resistance to light stress and high photosynthetic capacity at low temperature. In this paper, the ecophysiology of the two vascular plants is reviewed, including habitat characteristics, photosynthetic properties, cold resistance, and biochemical adaptations to cold.

18.
Plant Physiol Biochem ; 85: 85-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394804

RESUMO

The effects of increased doses of UV-B radiation on anatomical, biochemical and molecular features of leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes were investigated. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 Wm(-2) of biologically effective UV-B radiation for up to 72 h. Leaf thickness and the adaxial epidermis thickness fell more than 3-fold in both genotypes at the highest UV-B dose. Moreover, in Bluegold an evident disorganization in the different cell layers was observed at the highest UV-B radiation. A significant decrease in chlorophyll a/b after 6 h in Brigitta under the greater UV-B doses was observed. Anthocyanin and total phenolics were increased, especially at 0.19 Wm(-2), when compared to the control in both genotypes.Chlorogenic acid was the most abundant hydroxycinnamic acid in Brigitta, and was significantly higher (P ≤ 0.05) than in Bluegold leaves. Regarding the expression of phenylpropanoid genes, only the transcription factor VcMYBPA1 showed a significant and sustained induction at higher doses of UV-B radiation in both genotypes compared to the controls. Thus, the reduction of leaf thickness concomitant with a lower lipid peroxidation and rapid enhancement of secondary metabolites, accompanied by a stable induction of the VcMYBPA1 transcription factor suggest a better performance against UV-B radiation of the Brigitta genotype.


Assuntos
Mirtilos Azuis (Planta)/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenóis/metabolismo , Folhas de Planta/efeitos da radiação , Propionatos/metabolismo , Raios Ultravioleta , Mirtilos Azuis (Planta)/genética , Cromatografia Líquida de Alta Pressão , Folhas de Planta/metabolismo
19.
Funct Plant Biol ; 41(2): 156-167, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480975

RESUMO

Manganese (Mn2+) toxicity or UV-B radiation and their individual effects on plants have been documented previously. However, no study about the combined effect of these stresses is available. We evaluated the individual and combined effects of excess Mn2+ and UV-B radiation on physiological and biochemical parameters in two highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Mn toxicity (Brigitta (resistant) and Bluegold (sensitive)). Plants grown in Hoagland nutrient solution were subjected to the following treatments: 2µM MnCl2 (control), 500µM MnCl2 (toxic Mn2+), UV-B radiation (a daily dose of 94.4kJm-2), and the combined treatment (toxic Mn2++UV-B) for 30 days. In both cultivars, the Mn2++UV-B treatment caused a more negative effect on net photosynthesis (Pn), stomatal conductance (gs), the photochemical parameters of PSII and the chl a/b ratio than the treatments with toxic Mn2+ or UV-B alone. However, Brigitta showed also a better acclimation response in Pn and gs than Bluegold at the end of the experiment. The Mn2++UV-B treatment inhibited growth, enhanced radical scavenging activity and superoxide dismutase activity, and increased the concentration of total UV-absorbing compounds, phenols and anthocyanins, mainly in Bluegold. In conclusion, Mn-resistant Brigitta showed a better acclimation response and greater resistance to the combined stress of Mn2+ toxicity and UV-B exposure than the Mn-sensitive Bluegold. An increased concentration of photoprotective compounds and enhanced resistance to oxidative stress in Brigitta could underpin increased resistance to the combined stress.

20.
Mol Biotechnol ; 49(1): 32-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21225377

RESUMO

To investigate the molecular mechanisms of Al(3+)-stress in blueberry, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was employed to identify Al-regulated genes in roots of contrasting genotypes of highbush blueberry (Brigitta, Al(3+)-resistant and Bluegold, Al(3+)-sensitive). Plants grown in hydroponic culture were treated with 0 and 100 µM Al(3+) and collected at different times over 48 h. Seventy transcript-derived fragments (TDFs) were identified as being Al(3+) responsive, 31 of which showed significant homology to genes with known or putative functions. Twelve TDFs were homologous to uncharacterized genes and 27 did not have significant matches. The expression pattern of several of the genes with known functions in other species was confirmed by quantitative relative real-time RT-PCR. Twelve genes of known or putative function were related to cellular metabolism, nine associated to stress responses and other transcription and transport facilitation processes. Genes involved in signal transduction, photosynthetic and energy processes were also identified, suggesting that a multitude of processes are implicated in the Al(3+)-stress response as reported previously for other species. The Al(3+)-stress response genes identified in this study could be involved in Al(3+)-resistance in woody plants.


Assuntos
Alumínio/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Mirtilos Azuis (Planta)/genética , Regulação da Expressão Gênica de Plantas , Genes Reguladores , Clonagem Molecular , DNA Complementar/genética , Regulação para Baixo , Genes de Plantas , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA