Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods ; 206: 41-52, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964862

RESUMO

Three-dimensional (3D) printing has applications in many fields and has gained substantial traction in medicine as a modality to transform two-dimensional scans into three-dimensional renderings. Patient-specific 3D printed models have direct patient care uses in surgical and procedural specialties, allowing for increased precision and accuracy in developing treatment plans and guiding surgeries. Medical applications include surgical planning, surgical guides, patient and trainee education, and implant fabrication. 3D printing workflow for a laboratory or clinical service that produces anatomic models and guides includes optimizing imaging acquisition and post-processing, segmenting the imaging, and printing the model. Quality assurance considerations include supervising medical imaging expert radiologists' guidance and self-implementing in-house quality control programs. The purpose of this review is to provide a workflow and guide for starting or optimizing laboratories and clinical services that 3D-print anatomic models or guides for clinical use.


Assuntos
Modelos Anatômicos , Impressão Tridimensional , Diagnóstico por Imagem , Humanos , Planejamento de Assistência ao Paciente
2.
Micromachines (Basel) ; 15(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39203643

RESUMO

Medical Imaging Phantoms (MIPs) calibrate imaging devices, train medical professionals, and can help procedural planning. Traditional MIPs are costly and limited in customization. Additive manufacturing allows for customizable, patient-specific phantoms. This study examines the CT attenuation characteristics of contrast-injectable, chambered 3D-printed phantoms to optimize tissue-mimicking capabilities. A MIP was constructed from a CT of a complex pelvic tumor near the iliac bifurcation. A 3D reconstruction of these structures composed of three chambers (aorta, inferior vena cava, tumor) with ports for contrast injection was 3D printed. Desired attenuations were 200 HU (arterial I), 150 HU (venous I), 40 HU (tumor I), 150 HU (arterial II), 90 HU (venous II), and 400 HU (tumor II). Solutions of Optiray 350 and water were injected, and the phantom was scanned on CT. Attenuations were measured using ROIs. Mean attenuation for the six phases was as follows: 37.49 HU for tumor I, 200.50 HU for venous I, 227.92 HU for arterial I, 326.20 HU for tumor II, 91.32 HU for venous II, and 132.08 HU for arterial II. Although the percent differences between observed and goal attenuation were high, the observed relative HU differences between phases were similar to goal HU differences. The observed attenuations reflected the relative concentrations of contrast solutions used, exhibiting a strong positive correlation with contrast concentration. The contrast-injectable tumor phantom exhibited a useful physiologic range of attenuation values, enabling the modification of tissue-mimicking 3D-printed phantoms even after the manufacturing process.

3.
J Knee Surg ; 36(7): 725-730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34979581

RESUMO

INTRODUCTION: It is hypothesized that anatomic tunnel placement will create tunnels with violation of the posterior cortex and subsequently an oblique aperture that is not circumferentially surrounded by bone. In this article, we aimed to characterize posterior cruciate ligament (PCL) tibial tunnel using a three-dimensional (3D) computed tomography (CT) model. METHODS: Ten normal knee CTs with the patella, femur, and fibula removed were used. Simulated 11 mm PCL tibial tunnels were created at 55, 50, 45, and 40 degrees. The morphology of the posterior proximal tibial exit was examined with 3D modeling software. The length of tunnel not circumferentially covered (cortex violation) was measured to where the tibial tunnel became circumferential. The surface area and volume of the cylinder both in contact with the tibial bone and that not in contact with the tibia were determined. The percentages of the stick-out length surface area and volume not in contact with bone were calculated. RESULTS: The mean stick-out length of uncovered graft at 55, 50, 45, and 40 degrees were 26.3, 20.5, 17.3, and 12.7 mm, respectively. The mean volume of exposed graft at 55, 50, 45, and 40 degrees were 840.8, 596.2, 425.6, and 302.9 mm3, respectively. The mean percent of volume of exposed graft at 55, 50, 45, and 40 degrees were 32, 29, 25, and 24%, respectively. The mean surface of exposed graft at 55, 50, 45, and 40 degrees were 372.2, 280.4, 208.8, and 153.3 mm2, respectively. The mean percent of surface area of exposed graft at 55, 50, 45, and 40 degrees were 40, 39, 34, and 34%, respectively. CONCLUSION: Anatomic tibial tunnel creation using standard transtibial PCL reconstruction techniques consistently risks posterior tibial cortex violation and creation of an oblique aperture posteriorly. This risk is decreased with decreasing the angle of the tibial tunnel, though the posterior cortex is still compromised with angles as low as 40 degrees. With posterior cortex violation, a surgeon should be aware that a graft within the tunnel or socket posteriorly may not be fully in contact with bone. This is especially relevant with inlay and socket techniques.


Assuntos
Reconstrução do Ligamento Cruzado Posterior , Ligamento Cruzado Posterior , Humanos , Tíbia/cirurgia , Tíbia/anatomia & histologia , Articulação do Joelho/cirurgia , Ligamento Cruzado Posterior/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Reconstrução do Ligamento Cruzado Posterior/métodos
4.
Micromachines (Basel) ; 14(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37893365

RESUMO

Three-dimensionally printed phantoms are increasingly used in medical imaging and research due to their cost-effectiveness and customizability, offering valuable alternatives to commercial phantoms. The purpose of this study was to assess the computed tomography (CT) attenuation characteristics of 27 resin materials from Formlabs, a 3D printing equipment and materials manufacturer. Cube phantoms (both solid and hollow constructions) produced with each resin were subjected to CT scanning under varying tube current-time products with attenuation measurements recorded in Hounsfield units (HU). The resins exhibited a wide range of attenuation values (-3.33 to 2666.27 HU), closely mimicking a range of human tissues, from fluids to dense bone structures. The resins also demonstrated consistent attenuation regardless of changes in the tube current. The CT attenuation analysis of FormLabs resins produced an archive of radiological imaging characteristics of photopolymers that can be utilized to construct more accurate tissue mimicking medical phantoms and improve the evaluation of imaging device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA