Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 172(4): 2261-2274, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733514

RESUMO

We report a novel form of xylem dysfunction in angiosperms: reversible collapse of the xylem conduits of the smallest vein orders that demarcate and intrusively irrigate the areoles of red oak (Quercus rubra) leaves. Cryo-scanning electron microscopy revealed gradual increases in collapse from approximately -2 MPa down to -3 MPa, saturating thereafter (to -4 MPa). Over this range, cavitation remained negligible in these veins. Imaging of rehydration experiments showed spatially variable recovery from collapse within 20 s and complete recovery after 2 min. More broadly, the patterns of deformation induced by desiccation in both mesophyll and xylem suggest that cell wall collapse is unlikely to depend solely on individual wall properties, as mechanical constraints imposed by neighbors appear to be important. From the perspective of equilibrium leaf water potentials, petioles, whose vessels extend into the major veins, showed a vulnerability to cavitation that overlapped in the water potential domain with both minor vein collapse and buckling (turgor loss) of the living cells. However, models of transpiration transients showed that minor vein collapse and mesophyll capacitance could effectively buffer major veins from cavitation over time scales relevant to the rectification of stomatal wrong-way responses. We suggest that, for angiosperms, whose subsidiary cells give up large volumes to allow large stomatal apertures at the cost of potentially large wrong-way responses, vein collapse could make an important contribution to these plants' ability to transpire near the brink of cavitation-inducing water potentials.


Assuntos
Folhas de Planta/fisiologia , Quercus/fisiologia , Xilema/fisiologia , Microscopia Crioeletrônica , Técnica de Fratura por Congelamento , Modelos Biológicos , Folhas de Planta/ultraestrutura , Transpiração Vegetal/fisiologia , Quercus/ultraestrutura , Água/fisiologia , Xilema/ultraestrutura
2.
Biochemistry ; 55(34): 4850-63, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27505298

RESUMO

Multidrug resistance (MDR) refers to the acquired ability of cells to tolerate a broad range of toxic compounds. One mechanism cells employ is to increase the level of expression of efflux pumps for the expulsion of xenobiotics. A key feature uniting efflux-related mechanisms is multidrug (MD) recognition, either by efflux pumps themselves or by their transcriptional regulators. However, models describing MD binding by MDR effectors are incomplete, underscoring the importance of studies focused on the recognition elements and key motifs that dictate polyspecific binding. One such motif is the GyrI-like domain, which is found in several MDR proteins and is postulated to have been adapted for small-molecule binding and signaling. Here we report the solution binding properties and crystal structures of two proteins containing GyrI-like domains, SAV2435 and CTR107, bound to various ligands. Furthermore, we provide a comparison with deposited crystal structures of GyrI-like proteins, revealing key features of GyrI-like domains that not only support polyspecific binding but also are conserved among GyrI-like domains. Together, our studies suggest that GyrI-like domains perform evolutionarily conserved functions connected to multidrug binding and highlight the utility of these types of studies for elucidating mechanisms of MDR.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Chlorobium/genética , Chlorobium/metabolismo , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Genes MDR , Ligantes , Modelos Moleculares , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
3.
Biol Lett ; 12(6)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27303054

RESUMO

Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear.


Assuntos
Abelhas/fisiologia , Voo Animal/fisiologia , Asas de Animais/lesões , Animais , Fenômenos Biomecânicos , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA