Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.284
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 42(20): e110844, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661798

RESUMO

Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.


Assuntos
Neoplasias , Rad51 Recombinase , Animais , Camundongos , Envelhecimento/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(32): e2400819121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074283

RESUMO

To test the hypothesis that an abiotic Earth and its inert atmosphere could form chemically reactive carbon- and nitrogen-containing compounds, we designed a plasma electrochemical setup to mimic lightning-induced electrochemistry under steady-state conditions of the early Earth. Air-gap electrochemical reactions at air-water-ground interfaces lead to remarkable yields, with up to 40 moles of carbon dioxide being reduced into carbon monoxide and formic acid, and 3 moles of gaseous nitrogen being fixed into nitrate, nitrite, and ammonium ions, per mole of transmitted electrons. Interfaces enable reactants (e.g., minerals) that may have been on land, in lakes, and in oceans to participate in radical and redox reactions, leading to higher yields compared to gas-phase-only reactions. Cloud-to-ground lightning strikes could have generated high concentrations of reactive molecules locally, establishing diverse feedstocks for early life to emerge and survive globally.

3.
Rev Med Virol ; 34(4): e2562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924213

RESUMO

Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.


Assuntos
COVID-19 , Exossomos , SARS-CoV-2 , Exossomos/metabolismo , Humanos , COVID-19/terapia , COVID-19/virologia , SARS-CoV-2/fisiologia , Tratamento Farmacológico da COVID-19 , Células-Tronco Mesenquimais/virologia , Células-Tronco Mesenquimais/metabolismo , Antivirais/uso terapêutico , Antivirais/farmacologia , Animais
4.
Chem Soc Rev ; 53(19): 9652-9717, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39189110

RESUMO

Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.

5.
Nano Lett ; 24(32): 9874-9881, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096192

RESUMO

We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.


Assuntos
Nanomedicina , Coroa de Proteína , Proteômica , Coroa de Proteína/química , Coroa de Proteína/análise , Humanos , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Fluxo de Trabalho
6.
Biochem Biophys Res Commun ; 704: 149674, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387328

RESUMO

BACKGROUND: Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are a major cause of male infertility by disrupting spermatogenesis. OBJECTIVE: Here, we examined the potential protective benefits of kaempferol (KMF), a flavonol known for its antioxidant properties, on BPA-induced reproductive toxicity in adult male rats. METHODS: Human skin fibroblast cells (HNFF-P18) underwent cell viability assays. Thirty-five male Wistar rats were assigned to four groups: 1) control, 2) BPA (10 mg/kg), 3,4) BPA, and different dosages of KMF (1 and 10 mg/kg). The study examined the rats' testosterone serum level, antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), oxidative markers malondialdehyde (MDA) and total antioxidant capacity (TAC), body weight, weight ratios of testis and prostate, and histopathological examinations. RESULTS: The study revealed that using KMF to treat rats exposed to BPA increased cell viability. Moreover, the rats' testosterone levels, which BPA reduced, showed a significant increase after KMF was included in the treatment regimen. Treatment with BPA led to oxidative stress and tissue damage, but simultaneous treatment with KMF restored the damaged tissue to its normal state. Histopathology studies on testis and prostate tissues showed that KMF had an ameliorative impact on BPA-induced tissue damage. CONCLUSIONS: The research suggests that KMF, a flavonol, could protect male rats from the harmful effects of BPA on reproductive health, highlighting its potential healing properties.


Assuntos
Antioxidantes , Quempferóis , Fenóis , Adulto , Ratos , Masculino , Humanos , Animais , Antioxidantes/farmacologia , Quempferóis/farmacologia , Ratos Wistar , Testículo/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Estresse Oxidativo , Testosterona/metabolismo
7.
BMC Plant Biol ; 24(1): 104, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336608

RESUMO

BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.


Assuntos
Agrobacterium tumefaciens , Tumores de Planta , Agrobacterium tumefaciens/genética , Doenças das Plantas/microbiologia , Bactérias
8.
BMC Plant Biol ; 24(1): 190, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486151

RESUMO

BACKGROUND: Rosmarinic acid (RA), like other phenolic compounds, is sources of antioxidants and anti-inflammatory agents in medicinal plants. In vitro culture of plants can improve the medicinal plants' metabolite profile and phenolic compound quantity. To date, various methods have been proposed to increase this medicinal metabolite in plants, among which the use of bioelicitors can be mentioned. In the present study, a native isolate of heterocystous cyanobacteria, Nostoc spongiaeforme var. tenue ISB65, was used to stimulate the production of biomass and content of RA in Mentha piperita L. (peppermint) grown in vitro from apical meristem. Mentha piperita L. explants were inoculated in half strength Murashige and Skoog (1/2 MS) medium containing cyanobacterial lysate (CL). After 50 days of culturing, the growth indices, the content of photosynthetic pigments, and RA in control and treated plants were measured. RESULTS: CL inoculation resulted in a significant enhancement in the vegetative growth indices of peppermint, including root and shoot length, plant biomass and leaf number. The content of photosynthetic pigments also increased in cyanobacteria-treated plants. Inoculation with CL increased the RA content by 2.3-fold, meaning that the plants treated with CL had the highest RA content (7.68 mg. g- 1 dry weight) compared to the control (3.42 mg. g- 1 dry weight). Additionally, HPLC analysis revealed the presence of several auxins in CL. CONCLUSIONS: The presence of auxins and the chemical content of CL such as K+ and Ca2+, as regulators of metabolic pathways and molecular activities of cells, may be responsible for the enhanced growth and phenolic compounds of plants under tissue culture conditions. An improvement in RA content in the tissue culture of medicinal plants treated with CL was reported for the first time in this investigation.


Assuntos
Cianobactérias , Plantas Medicinais , Mentha piperita/química , Mentha piperita/metabolismo , Mentha piperita/microbiologia , Ácido Rosmarínico , Meristema , Biomassa , Fenóis/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Medicinais/química
9.
Eur Respir J ; 63(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359962

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic substantially impacted different age groups, with children and young people not exempted. Many have experienced enduring health consequences. Presently, there is no consensus on the health outcomes to assess in children and young people with post-COVID-19 condition. Furthermore, it is unclear which measurement instruments are appropriate for use in research and clinical management of children and young people with post-COVID-19. To address these unmet needs, we conducted a consensus study, aiming to develop a core outcome set (COS) and an associated core outcome measurement set (COMS) for evaluating post-COVID-19 condition in children and young people. Our methodology comprised of two phases. In phase 1 (to create a COS), we performed an extensive literature review and categorisation of outcomes, and prioritised those outcomes in a two-round online modified Delphi process followed by a consensus meeting. In phase 2 (to create the COMS), we performed another modified Delphi consensus process to evaluate measurement instruments for previously defined core outcomes from phase 1, followed by an online consensus workshop to finalise recommendations regarding the most appropriate instruments for each core outcome. In phase 1, 214 participants from 37 countries participated, with 154 (72%) contributing to both Delphi rounds. The subsequent online consensus meeting resulted in a final COS which encompassed seven critical outcomes: fatigue; post-exertion symptoms; work/occupational and study changes; as well as functional changes, symptoms, and conditions relating to cardiovascular, neuro-cognitive, gastrointestinal and physical outcomes. In phase 2, 11 international experts were involved in a modified Delphi process, selecting measurement instruments for a subsequent online consensus workshop where 30 voting participants discussed and independently scored the selected instruments. As a result of this consensus process, four instruments met a priori consensus criteria for inclusion: PedsQL multidimensional fatigue scale for "fatigue"; PedsQL gastrointestinal symptom scales for "gastrointestinal"; PedsQL cognitive functioning scale for "neurocognitive" and EQ-5D for "physical functioning". Despite proposing outcome measurement instruments for the remaining three core outcomes ("cardiovascular", "post-exertional malaise", "work/occupational and study changes"), a consensus was not achieved. Our international, consensus-based initiative presents a robust framework for evaluating post-COVID-19 condition in children and young people in research and clinical practice via a rigorously defined COS and associated COMS. It will aid in the uniform measurement and reporting of relevant health outcomes worldwide.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Adolescente , Criança , Humanos , Técnica Delphi , Avaliação de Resultados em Cuidados de Saúde , Projetos de Pesquisa , Resultado do Tratamento
10.
Small ; 20(24): e2309572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155584

RESUMO

Exploring combinatorial materials, as well as rational device configuration design, are assumed to be the key strategies for deploying versatile electrochemical devices. MXene sheets have revealed a high hydrophilic surface with proper mechanical and electrical characteristics, rendering them supreme additive candidates to integrate in electrospun electrochemical power tools. The synergetic effects of MXene 2D layers with the nanofibrous networks can boost actuator responsive ability, battery capacity retention, fuel cell stability, sensor sensitivity, and supercapacitor areal capacitance. Their superior mechanical features can be endowed to the electrospun layers through the embedding of the MXene additive. In this review, the preparation and inherent features of the MXene configurations are briefly evaluated. The fabrication and overall performance of the MXene-loaded nanofibers applicable in electrochemical actuators, batteries, fuel cells, sensors, and supercapacitors are comprehensively figured out. Eventually, an outlook on the future development of MXene-based electrospun composites is presented. A substantial focus has been devoted to date to engineering conjugated MXene and electrospun fibrous frames. The potential performance of the MXene-decorated nanofibers presents a bright future of nanoengineering toward technological growth. Meanwhile, a balance between the pros and cons of the synthesized MXene composite layers is worthwhile to consider in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA