Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743255

RESUMO

Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.


Assuntos
Produtos Biológicos , Neoplasias Colorretais , Exossomos , Vesículas Extracelulares , Animais , Bovinos , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Leite
2.
Onco Targets Ther ; 17: 521-536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948385

RESUMO

Introduction: The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods: C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results: Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 µg/mL and 64.4 ± 8 µg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 µg/mL for MCF-7 and 166.4 ± 27 µg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion: The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38090280

RESUMO

Background: Breast cancer is a leading cause of death and one of the most common fatal medical conditions in the world. Chemical compounds of various types have been identified in the Red Sea marine sponge Xestospongia testudinaria, including sterol esters, sterols, indole alkaloids, and brominated polyunsaturated fatty acids. These compounds have demonstrated promising biological features, which in cludes anti-inflammatory, cancer preventive, and antioxidant capacities. Methods: The cytotoxic potential of Xestospongia testudinaria was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological alterations in MCF-7 cell line. Furthermore, the flow cytometry was also utilized to assess apoptosis and identify changes in the cell cycle; besides, cell migration was assessed by scratch wound-healing assay. Results: A significant dose-dependent decrease in the percentage of MCF-7 cell viability was observed with IC50 39.8 ug/mL. Functional studies were performed on MCF-7 to show that Xestospongia testudinaria raises apoptotic cell death and induces growth arrest at the G1/G0 while inhibiting cell migration in scratch assay. Conclusion: These results demonstrated that Xestospongia testudinaria extract has an inhibitory effect on breast cancer cells proliferation, migration and induce apoptosis. Thus, it holds great promise as a potential treatment for breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA