Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 57(7): 1015-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207608

RESUMO

Patients who have sustained brain injury or had developmental brain lesions present a non-negligible risk for developing delayed epilepsy. Finding therapeutic strategies to prevent development of epilepsy in at-risk patients represents a crucial medical challenge. Noncoding microRNA molecules (miRNAs) are promising candidates in this area. Indeed, deregulation of diverse brain-specific miRNAs has been observed in animal models of epilepsy as well as in patients with epilepsy, mostly in temporal lobe epilepsy (TLE). Herein we review deregulated miRNAs reported in epilepsy with potential roles in key molecular and cellular processes underlying epileptogenesis, namely neuroinflammation, cell proliferation and differentiation, migration, apoptosis, and synaptic remodeling. We provide an up-to-date listing of miRNAs altered in epileptogenesis and assess recent functional studies that have interrogated their role in epilepsy. Last, we discuss potential applications of these findings for the future development of disease-modifying therapeutic strategies for antiepileptogenesis.


Assuntos
Encéfalo/metabolismo , Epilepsia , MicroRNAs/genética , Anticonvulsivantes/uso terapêutico , Epilepsia/etiologia , Epilepsia/genética , Epilepsia/patologia , Humanos , MicroRNAs/efeitos dos fármacos
2.
J Neurosci ; 32(19): 6688-98, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573691

RESUMO

During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven giant depolarizing potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To determine this, we studied the morphophysiological fate of single SPA cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA-to-GDP transition is paralleled by a remarkable maturation in the morphophysiological properties of GABAergic neurons. Compared with those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morphophysiological properties of GABAergic interneurons as they progress from SPAs to GDPs marks the emergence of synapse-driven network oscillations.


Assuntos
Hipocampo/crescimento & desenvolvimento , Interneurônios/citologia , Interneurônios/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Técnicas de Introdução de Genes , Hipocampo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos
3.
J Neurosci ; 31(1): 34-45, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21209187

RESUMO

GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 µM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Corpos Cetônicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácido Pirúvico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/farmacologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos/sangue , Bicuculina/farmacologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Bumetanida/farmacologia , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Técnicas In Vitro , Ácido Láctico/sangue , Masculino , Técnicas de Patch-Clamp/métodos , Ácido Pirúvico/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia
4.
Cell Rep ; 40(8): 111202, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001978

RESUMO

Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas.


Assuntos
Endocanabinoides , Neocórtex , Interneurônios/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Receptor CB1 de Canabinoide , Ácido gama-Aminobutírico/fisiologia
5.
J Physiol ; 588(Pt 1): 83-91, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19917570

RESUMO

Several patterns of coherent activity have been described in developing cortical structures, thus providing a general framework for network maturation. A detailed timely description of network patterns at circuit and cell levels is essential for the understanding of pathogenic processes occurring during brain development. Disturbances in the expression timetable of this pattern sequence are very likely to affect network maturation. This review focuses on the maturation of coherent activity patterns in developing neocortical structures. It emphasizes the intrinsic and synaptic cellular properties that are unique to the immature neocortex and, in particular, the critical role played by extracellular glutamate in controlling network excitability and triggering synchronous network waves of activity.


Assuntos
Envelhecimento/fisiologia , Relógios Biológicos/fisiologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/fisiologia , Animais , Modelos Neurológicos , Ratos , Transmissão Sináptica/fisiologia
6.
J Neurosci ; 28(48): 12851-63, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036979

RESUMO

Developing cortical networks generate a variety of coherent activity patterns that participate in circuit refinement. Early network oscillations (ENOs) are the dominant network pattern in the rodent neocortex for a short period after birth. These large-scale calcium waves were shown to be largely driven by glutamatergic synapses albeit GABA is a major excitatory neurotransmitter in the cortex at such early stages, mediating synapse-driven giant depolarizing potentials (GDPs) in the hippocampus. Using functional multineuron calcium imaging together with single-cell and field potential recordings to clarify distinct network dynamics in rat cortical slices, we now report that the developing somatosensory cortex generates first ENOs then GDPs, both patterns coexisting for a restricted time period. These patterns markedly differ by their developmental profile, dynamics, and mechanisms: ENOs are generated before cortical GDPs (cGDPs) by the activation of glutamatergic synapses mostly through NMDARs; cENOs are low-frequency oscillations (approximately 0.01 Hz) displaying slow kinetics and gradually involving the entire network. At the end of the first postnatal week, GABA-driven cortical GDPs can be reliably monitored; cGDPs are recurrent oscillations (approximately 0.1 Hz) that repetitively synchronize localized neuronal assemblies. Contrary to cGDPs, cENOs were unexpectedly facilitated by short anoxic conditions suggesting a contribution of glutamate accumulation to their generation. In keeping with this, alterations of extracellular glutamate levels significantly affected cENOs, which are blocked by an enzymatic glutamate scavenger. Moreover, we show that a tonic glutamate current contributes to the neuronal membrane excitability when cENOs dominate network patterns. Therefore, cENOs and cGDPs are two separate aspects of neocortical network maturation that may be differentially engaged in physiological and pathological processes.


Assuntos
Relógios Biológicos/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Neurogênese/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/fisiologia , Sincronização Cortical , Líquido Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/fisiopatologia , Potenciais da Membrana/fisiologia , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/citologia , Sinapses/ultraestrutura , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/metabolismo
7.
Sci Rep ; 6: 21769, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26878798

RESUMO

The secreted leucine-rich glioma inactivated 1 (LGI1) protein is an important actor for human seizures of both genetic and autoimmune etiology: mutations in LGI1 cause inherited temporal lobe epilepsy, while LGI1 is involved in antibody-mediated encephalitis. Remarkably, Lgi1-deficient (Lgi1(-/-)) mice recapitulate the epileptic disorder and display early-onset spontaneous seizures. To understand how Lgi1-deficiency leads to seizures during postnatal development, we here investigated the early functional and structural defects occurring before seizure onset in Lgi1(-/-) mice. We found an increased excitatory synaptic transmission in hippocampal slices from Lgi1(-/-) mice. No structural alteration in the morphology of pyramidal cell dendrites and synapses was observed at this stage, indicating that Lgi1-deficiency is unlikely to trigger early developmental abnormalities. Consistent with the presynaptic subcellular localization of the protein, Lgi1-deficiency caused presynaptic defects, with no alteration in postsynaptic AMPA receptor activity in Lgi1-/- pyramidal cells before seizure onset. Presynaptic dysfunction led to increased synaptic glutamate levels, which were associated with hyperexcitable neuronal networks. Altogether, these data show that Lgi1 acts presynaptically as a negative modulator of excitatory synaptic transmission during early postnatal development. We therefore here reveal that increased presynaptic glutamate release is a key early event resulting from Lgi1-deficiency, which likely contributes to epileptogenesis.


Assuntos
Epilepsia/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas/metabolismo , Transmissão Sináptica , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Knockout , Proteínas/genética , Células Piramidais/fisiologia
8.
Trends Neurosci ; 38(9): 524-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26318208

RESUMO

In the neocortex, different types of excitatory and inhibitory neurons connect to one another following a detailed blueprint, defining functionally-distinct subnetworks, whose activity and modulation underlie complex cognitive functions. We review the cell-autonomous plasticity of perisomatic inhibition onto principal excitatory neurons. We propose that the tendency of different cortical layers to exhibit depression or potentiation of perisomatic inhibition is dictated by the specific identities of principal neurons (PNs). These are mainly defined by their projection targets and by their preference to be innervated by specific perisomatic-targeting basket cell types. Therefore, principal neurons responsible for relaying information to subcortical nuclei are differentially inhibited and show specific forms of plasticity compared to other PNs that are specialized in more associative functions.


Assuntos
Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Inibição Neural/fisiologia , Vias Neurais/fisiologia
9.
Neuron ; 71(4): 695-709, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21867885

RESUMO

Connectivity in the developing hippocampus displays a functional organization particularly effective in supporting network synchronization, as it includes superconnected hub neurons. We have previously shown that hub network function is supported by a subpopulation of GABA neurons. However, it is unclear whether hub cells are only transiently present or later develop into distinctive subclasses of interneurons. These questions are difficult to assess given the heterogeneity of the GABA neurons and the poor early expression of markers. To circumvent this conundrum, we used "genetic fate mapping" that allows for the selective labeling of GABA neurons based on their place and time of origin. We show that early-generated GABA cells form a subpopulation of hub neurons, characterized by an exceptionally widespread axonal arborization and the ability to single-handedly impact network dynamics when stimulated. Pioneer hub neurons remain into adulthood, when they acquire the classical markers of long-range projecting GABA neurons.


Assuntos
Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Linhagem da Célula , Feminino , Hipocampo/metabolismo , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Neurônios/citologia , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA