Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Chem ; 119: 105557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952242

RESUMO

A new set of ibuprofen-quinoline conjugates comprising quinolinyl heterocycle and ibuprofen moieties linked by an alkyl chain were synthesized in good yields utilizing an optimized reaction procedure in a molecular hybridization approach to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. The synthesized conjugates were screened for their anti-inflammatory, and ulcerogenic properties. Several conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test without showing any ulcerogenic liability. In addition, most conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate test. The most promising conjugates were the unsubstituted and 6-substituted fluoro- and chloro-derivatives of 2-(trifluoromethyl)quinoline linked to ibuprofen by a propyl chain. Their anti-inflammatory activity was evaluated against LPS-stimulated inflammatory reactions in RAW264.7 mouse macrophages. In this regard, it was found that most of the conjugates were able to significantly reduce the release and production of nitric oxide in the LPS-stimulated macrophages. The secretion and expression of the pro-inflammatory cytokines IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) were also significantly suppressed.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Desenho de Fármacos , Ibuprofeno/farmacologia , Quinolinas/farmacologia , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Ibuprofeno/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Dor/induzido quimicamente , Dor/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Quinolinas/química , Células RAW 264.7
2.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163939

RESUMO

Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a-k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Oxazolona/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum , Fatores de Virulência/metabolismo
3.
Molecules ; 27(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144662

RESUMO

We synthesized a set of small molecules using a molecular hybridization approach with good yields. The antiviral properties of the synthesized conjugates against the SAR-CoV-2 virus were investigated and their cytotoxicity was also determined. Among all the synthesized conjugates, compound 9f showed potential against SARS-CoV-2 and low cytotoxicity. The conjugates' selectivity indexes (SIs) were determined to correlate the antiviral properties and cytotoxicity. The observed biological data were further validated using computational studies.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/uso terapêutico , Humanos , Simulação de Acoplamento Molecular
4.
Bioorg Chem ; 111: 104885, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838559

RESUMO

New antibacterial drugs are urgently needed to tackle the rapid rise in multi-drug resistant bacteria. DNA gyrase is a validated target for the development of new antibacterial drugs. Thus, in the present investigation, a novel series of 1,2,4-oxadiazole-chalcone/oxime (6a-f) and (7a-f) were synthesized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title compounds were evaluated for their in-vitro antimicrobial activity by the modified agar diffusion method as well as their E. coli DNA gyrase inhibitory activity. The minimum inhibitory concentration (MIC) and the structure activity relationships (SARs) were evaluated. Among all, compounds 6a, 6c-e, 7b and 7e were the most potent and proved to possess broad spectrum activity against the tested Gram-positive and Gram-negative organisms. Additionally, compounds 6a (against S. aureus), 6c (against B. subtilis and E. hirae), 6e (against E. hirae), 6f, 7a and 7c (against E. coli) and 7d (against B. subtilis), with MIC value of 3.12 µM were two-fold more potent than the standard ciprofloxacin (MIC = 6.25 µM). Mechanistically, compounds 6c, 7c, 7e and 7b had good inhibitory activity against E. coli gyrase with IC50 values of 17.05, 13.4, 16.9, and 19.6 µM, respectively, in comparison with novobiocin (IC50 = 12.3 µM) and ciprofloxacin (IC50 = 10.5 µM). The molecular docking results at DNA gyrase active site revealed that the most potent compounds 6c and 7c have binding mode and docking scores comparable to that of ciprofloxacin and novobiocin suggesting their antibacterial activity via inhibition of DNA gyrase. Finally, the predicted parameters of Lipinski's rule of five and ADMET analysis showed that 6c and 7c had good drug-likeness and acceptable physicochemical properties. Therefore, the hybridization of the chalcone and oxadiazole moieties could be promising lead as antibacterial candidate which merit further future structural optimizations.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
5.
J Enzyme Inhib Med Chem ; 36(1): 1067-1078, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34027787

RESUMO

Two series of chalcone/aryl carboximidamide hybrids 4a-f and 6a-f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Chalcona/farmacologia , Dinoprostona/antagonistas & inibidores , Desenho de Fármacos , Edema/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Carragenina , Células Cultivadas , Chalcona/síntese química , Chalcona/química , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
6.
Rapid Commun Mass Spectrom ; 34(4): e8593, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31518025

RESUMO

RATIONALE: The halogenated derivatives of N-(2-methoxy)benzyl-2,5-dimethoxyphenethylamine (25-NBOMe) such as the 4-bromo analogue (25B-NBOMe) represent a new class of hallucinogenic or psychedelic drugs. The purpose of this study was to determine the role of the electron-donating groups (halogen and dimethoxy) in the pathway of decomposition for the distonic molecular radical cation in the electron ionization mass spectrometry (EI-MS) process of the trifluoroacetamide (TFA) derivatives. METHODS: The systematic removal of substituents from the 4-halogenated 2,5-dimethoxyphenethylamine portion of the N-dimethoxybenzyl NBOMe analogues allowed an evaluation of structural effects on the formation of major fragment ions in the EI-MS of the TFA derivatives. All six regioisomeric dimethoxybenzyl-substituted analogues (2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dimethoxy) for the four series of phenethyl aromatic ring substitution patterns were prepared, derivatized and analyzed via gas chromatography coupled with EI-MS. RESULTS: The analogues yield two unique radical cation fragments from the decomposition of the common distonic molecular radical cation. The substituted phenylethene radical cation (m/z 164) is the base peak or second most abundant ion in all six TFA-2,5-dimethoxyphenethylamine isomers. The dimethoxybenzyltrifloroacetamide radical cation (m/z 263) is the base peak or second most abundant ion in the 2- and 3-monomethoxyphenethylamine isomers. However, the 2- and 3-methoxyphenylethene radical cation (m/z 134) is among the five most abundant ions for each of these twelve isomers. Only one isomer in the phenethylamine series yields the corresponding unsubstituted phenylethene radical cation at m/z 104. CONCLUSIONS: The decomposition of the hydrogen-rearranged distonic molecular radical cation favors formation of the dimethoxybenzyltrifloroacetamide (m/z 263) species for the less electron-rich phenethyl aromatic rings. The addition of electron-donating groups to the aromatic ring of the phenethyl group as in the NBOMe-type molecules shifts the decomposition of the common distonic molecular radical cation to favor the formation of the electron-rich substituted phenylethene radical cation.


Assuntos
Anisóis/química , Alucinógenos/química , Fenetilaminas/química , Isomerismo , Espectrometria de Massas , Estrutura Molecular
7.
Molecules ; 26(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396585

RESUMO

A suitable HPLC method has been selected and validated for rapid simultaneous separation and determination of four imidazole anti-infective drugs, secnidazole, omeprazole, albendazole, and fenbendazole, in their final dosage forms, in addition to human plasma within 5 min. The method suitability was derived from the superiority of using the environmentally benign solvent, methanol over acetonitrile as a mobile phase component in respect of safety issues and migration times. Separation of the four anti-infective drugs was performed on a Thermo Scientific® BDS Hypersil C8 column (5 µm, 2.50 × 4.60 mm) using a mobile phase consist of MeOH: 0.025 M KH2PO4 (70:30, v/v) adjusted to pH 3.20 with ortho-phosphoric acid at room temperature. The flow rate was 1.00 mL/min and maximum absorption was measured with UV detector set at 300 nm. Limits of detection were reported to be 0.41, 0.13, 0.18, and 0.15 µg/mL for secnidazole, omeprazole, albendazole, and fenbendazole, respectively, showing a high degree of the method sensitivity. The method of analysis was validated according to Food and Drug Administration (FDA)guidelines for the determination of the drugs, either in their dosage forms with highly precise recoveries, or clinically in human plasma, especially regarding pharmacokinetic and bioequivalence studies.


Assuntos
Anti-Infecciosos/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Imidazóis/análise , Albendazol/análise , Albendazol/sangue , Calibragem , Técnicas de Química Analítica , Formas de Dosagem , Fenbendazol/análise , Fenbendazol/sangue , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/sangue , Metronidazol/análogos & derivados , Metronidazol/análise , Metronidazol/sangue , Omeprazol/análise , Omeprazol/sangue , Segurança do Paciente , Reprodutibilidade dos Testes , Solventes , Temperatura , Raios Ultravioleta , Estados Unidos , United States Food and Drug Administration
8.
Planta Med ; 84(9-10): 613-626, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29672820

RESUMO

Use of herbal dietary supplements by the public is common and has been happening for centuries. In the United States, the Food and Drug Administration has a limited scope of regulation over marketed herbal dietary supplements, which may contain toxic botanical compounds that pose a public health risk. While the Food and Drug Administration has made efforts to prohibit the sale of unsafe herbal dietary supplements, numerous reports have proliferated of adverse events due to these supplements. This literature review investigates bioactive plant compounds commonly used in herbal dietary supplements and their relative toxicities. Using primarily the National Library of Medicine journal database and SciFinder for current reports, 47 toxic compounds in 55 species from 46 plant families were found to demonstrate harmful effects due to hepatic, cardiovascular, central nervous system, and digestive system toxicity. This review further contributes a novel and comprehensive view of toxicity across the botanical dietary market, and investigates the toxicity of the top ten botanical dietary supplements purchased in the United States of America to gauge the exposure risk of toxicity to the public. The criteria of measuring toxicity in this review (plant compound, family, quantity, and toxicity effects) across the entire market in the United States, with special attention to those supplements whose exposure to the consumer is maximal, provides a unique contribution to the investigation of botanical supplements.


Assuntos
Suplementos Nutricionais/efeitos adversos , Preparações de Plantas/efeitos adversos , Plantas/química , Animais , Humanos
9.
Planta Med ; 82(6): 505-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054916

RESUMO

Many herbal medicinal products have been found to contain synthetic prescription drugs as chemical adulterants. This has become evident by the number of toxicity cases and adverse reactions reported in which casualties were reported via analytical techniques that detected the presence of chemical adulterants in them, which could be responsible for their toxicity. The adulteration of herbal medicinal products with synthetic drugs continues to be a serious problem for regulatory agencies. This review provides up to date information on cases of toxicity, major chemical adulterants in herbal medicinal products, and current analytical techniques used for their detection.


Assuntos
Contaminação de Medicamentos , Medicina Herbária , Preparações de Plantas/química , Preparações de Plantas/toxicidade , Cromatografia em Camada Fina/métodos , Eletroforese Capilar/métodos , Humanos , Espectrometria de Massas/métodos , Preparações de Plantas/efeitos adversos , Plantas Medicinais
10.
Planta Med ; 82(13): 1208-16, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27124240

RESUMO

YANG XIN is a traditional Chinese medicine formulation used for nervous fatigue and consists of a proprietary blend of concentrated extracts from 18 plant ingredients. The 18 constituent plant ingredients, YANG XIN capsules, and formulations 2014-005_1 A and 1B were extracted by consecutive 24-hour macerations with dichloromethane followed by methanol. Metabolite separation was carried out through LC-MS in 40 minutes. Data acquisitions for qualitative and quantitative analyses of the samples were collected under (±) ESI modes and (+) APCI mode using full spectrum scan analysis.A total of 18 analytical markers were identified by LC-MS for YANG XIN formulations based on accurate mass measurements, molecular formula, double bond equivalent, MFG score, and error (ppm) of the measurement. Aditionally, a comparison of the data with previously reported results for the compounds, followed by identity confirmation with standard compounds, was performed. Seventeen analytical markers representing 17 plant ingredients in the different YANG XIN formulations were quantified for the first time. The YANG XIN capsules and the 2014-005_1B formulation were similar to each other and different from the 2014-005_1 A formulation based on the fact that both YANG XIN capsules and the 2014-005_1B formulation contain the same analytical markers. This method provides good linearity (r(2) > 0.9945), intraday precision (R. S. D. < 3.9 %), interday precision (R. S. D. < 5.6 %), accuracy (99.2-101 %), recovery (145.7 %), limit of detection (0.0011-0.0732 µg/mL), and limit of quantitation (0.0038-0.2441 µg/mL).


Assuntos
Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas por Ionização por Electrospray , Medicamentos de Ervas Chinesas/normas , Controle de Qualidade
11.
Onco Targets Ther ; 17: 521-536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948385

RESUMO

Introduction: The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods: C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results: Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 µg/mL and 64.4 ± 8 µg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 µg/mL for MCF-7 and 166.4 ± 27 µg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion: The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.

12.
Biomed Pharmacother ; 176: 116823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834008

RESUMO

Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-ß1/SMAD pathway.


Assuntos
Bleomicina , Extratos Vegetais , Fibrose Pulmonar , Transdução de Sinais , Proteínas Smad , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta1 , Ziziphus , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Masculino , Ziziphus/química , Camundongos , Extratos Vegetais/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Metabolômica/métodos , Anti-Inflamatórios/farmacologia , Espectrometria de Massa com Cromatografia Líquida
13.
RSC Adv ; 13(17): 11817-11825, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37077997

RESUMO

The primary objectives of green chemistry are the reduction of generation and use of hazardous substances. In healthcare, the most active areas of research in green chemistry are medication manufacturing and analysis. Analysts take serious steps for converting traditional analytical methods to eco-friendly ones that minimize the negative effects of solvents and chemicals on the environment and improve the healthcare. In the proposed work, two analytical methods are presented for the quantification of Finasteride (FIN) and Tadalafil (TAD) simultaneously in newly launched FDA-approved dosage form without prior separation. The first method is derivative spectrophotometry, which is based on measuring the amplitudes of first derivative spectrophotometric peaks of FIN and TAD in ethanolic solution at 221 nm and 293 nm, respectively. On the other hand, measuring the peak-to-peak amplitudes of second derivative spectrum of TAD solution at 291-299 nm was also performed. Regression equations show good linearity for FIN and TAD in the ranges of 10-60 µg mL-1 and 5-50 µg mL-1, respectively. The second method is the RP-HPLC method, where the chromatographic separation was achieved using the XBridgeTM C18 (150 × 4.6 mm, 5 µm) column. The eluent was the mixture of acetonitrile:phosphate buffer with triethylamine, 1% (v/v) adjusted to pH = 7 in the ratio of 50 : 50 (by volume). The flow rate was 1.0 mL min-1 with DAD-detection at 225 nm. This analytical procedure was linear over the ranges of 10-60 µg mL-1 and 2.5-40 µg mL-1 for FIN and TAD, respectively. The presented methods were validated (regarding ICH guidelines) and statistically compared by applying the t-test and F-test with the reported method. The greenness appraisal was performed using three different tools. The proposed validated methods were found to be green, sensitive, selective, and can be successfully used for quality control test.

14.
Curr Org Synth ; 20(8): 897-909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941818

RESUMO

AIM: pyrimidine and pyrazole have various biological and pharmaceutical applications such as antibacterial, antifungal, antileishmanial, anti-inflammatory, antitumor, and anti-cancer. INTRODUCTION: In this search, the goal is to prepare pyrimidine-pyrazoles and study their anticancer activity. METHODS: 1-allyl-4-oxo-6-(3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazoles (4,6-8) have been synthesized. Firstly, the reaction of 1-allyl-2-(methylthio)-4-oxo-6- (3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile (1) with chalcones 2a-b produced the intermediates 3a-b. The latter was reacted with hydrazine hydrate to give the targets 4a-b. On the other hand, hydrazinolysis of compound 1 yielded the hydrazino derivative 5 which upon reaction with chalcones 2c-i or 1,3-bicarbonyl compounds afforded the compounds 6-8. Finally, the new compounds were characterized by spectral data (IR, 1H NMR, 13C NMR) and elemental analysis. Moreover, they were evaluated for Panc-1, MCF-7, HT-29, A-549, and HPDE cell lines as anticancer activity. RESULTS: All the tested compounds 3,4,6-8 showed IC50 values > 50 µg/mL against the HPDE cell line. Compounds 6a and 6e exhibited potent anticancer activity where the IC50 values in the range of 1.7- 1.9, 1.4-182, 1.75-1.8, and 1.5-1.9 µg/mL against Panc-1, MCF-7, HT-29, and A-549 cell lines. CONCLUSION: New pyrimidine-pyrazole derivatives were simply synthesized, in addition, some of them showed potential anticancer activity.


Assuntos
Chalconas , Humanos , Pirimidinas/farmacologia , Pirimidinas/química , Pirazóis , Células HT29
15.
Biomolecules ; 13(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136556

RESUMO

The antimicrobial resistance of pathogenic microorganisms against commercial drugs has become a major problem worldwide. This study is the first of its kind to be carried out in Egypt to produce antimicrobial pharmaceuticals from isolated native taxa of the fungal Chaetomium, followed by a chemical investigation of the existing bioactive metabolites. Here, of the 155 clinical specimens in total, 100 pathogenic microbial isolates were found to be multi-drug resistant (MDR) bacteria. The Chaetomium isolates were recovered from different soil samples, and wild host plants collected from Egypt showed strong inhibitory activity against MDR isolates. Chaetomium isolates displayed broad-spectrum antimicrobial activity against C. albicans, Gram-positive, and Gram-negative bacteria, with inhibition zones of 11.3 to 25.6 mm, 10.4 to 26.0 mm, and 10.5 to 26.5 mm, respectively. As a consecutive result, the minimum inhibitory concentration (MIC) values of Chaetomium isolates ranged from 3.9 to 62.5 µg/mL. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis was performed for selected Chaetomium isolates with the most promising antimicrobial potential against MDR bacteria. The LC-MS/MS analysis of Chaetomium species isolated from cultivated soil at Assuit Governate, Upper Egypt (3), and the host plant Zygophyllum album grown in Wadi El-Arbaein, Saint Katherine, South Sinai (5), revealed the presence of alkaloids as the predominant bioactive metabolites. Most detected bioactive metabolites previously displayed antimicrobial activity, confirming the antibacterial potential of selected isolates. Therefore, the Chaetomium isolates recovered from harsh habitats in Egypt are rich sources of antimicrobial metabolites, which will be a possible solution to the multi-drug resistant bacteria tragedy.


Assuntos
Anti-Infecciosos , Chaetomium , Chaetomium/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Anti-Infecciosos/metabolismo , Antibacterianos/química , Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Solo
16.
Metabolites ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248830

RESUMO

The main purpose of this work is to investigate the phytochemical composition of Marrubium alysson L. non-polar fraction. GC/MS analysis was used to evaluate the plant extract's saponifiable and unsaponifiable matter. Although M. alysson L. lipoidal matter saponification produced 30.3% of fatty acid methyl esters and 69.7% of unsaponifiable matter. Phytol was the most dominant substance in the unsaponifiable materials. Notably, marrubiin which is one of the most prominent metabolites of Marrubium alysson L. was not detected through our adopted GC/MS technique. Thus, further characterization was proceeded through simple and rapid HPTLC analysis which successfully managed to identify marrubiin. Based on the regression equation, the concentration of marrubiin in M. alysson L. extract was 14.09 mg/g of dry extract. Concerning acetylcholinesterase inhibitory activity, both the crude M. alysson L. total methanolic extract and the non-polar fraction displayed reasonable inhibitory activity against acetylcholinesterase (AChE), whereas the pure compound marrubiin was considered to be the most effective and potent AChE inhibitor, with an IC50 value of 52.66 (µM). According to the molecular docking studies, potential sites of interaction between the pure chemical marrubiin and AChE were examined. The results show that Tyr124 on AChE residue was critical to the activity of the aforementioned drug. Based on the depicted marrubin AChE inhibition activity and reported safety profile, this chemical metabolite is considered as a promising lead compound for further pre-clinical investigation as well as drug development and optimization.

17.
Metabolites ; 13(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36837781

RESUMO

Cancer is the leading cause of death globally, with an increasing number of cases being annually reported. Nature-derived metabolites have been widely studied for their potential programmed necrosis, cytotoxicity, and anti-proliferation leading to enrichment for the modern medicine, particularly within the last couple of decades. At a more rapid pace, the concept of multi-target agents has evolved from being an innovative approach into a regular drug development procedure for hampering the multi-fashioned pathophysiology and high-resistance nature of cancer cells. With the advent of the Red Sea Penicillium chrysogenum strain S003-isolated indole-based alkaloids, we thoroughly investigated the molecular aspects for three major metabolites: meleagrin (MEL), roquefortine C (ROC), and isoroquefortine C (ISO) against three cancer-associated biological targets Cdc-25A, PTP-1B, and c-Met kinase. The study presented, for the first time, the detailed molecular insights and near-physiological affinity for these marine indole alkaloids against the assign targets through molecular docking-coupled all-atom dynamic simulation analysis. Findings highlighted the superiority of MEL's binding affinity/stability being quite in concordance with the in vitro anticancer activity profile conducted via sulforhodamine B bioassay on different cancerous cell lines reaching down to low micromolar or even nanomolar potencies. The advent of lengthy structural topologies via the metabolites' extended tetracyclic cores and aromatic imidazole arm permitted multi-pocket accommodation addressing the selectivity concerns. Additionally, the presence decorating polar functionalities on the core hydrophobic tetracyclic ring contributed compound's pharmacodynamic preferentiality. Introducing ionizable functionality with more lipophilic characters was highlighted to improve binding affinities which was also in concordance with the conducted drug-likeness/pharmacokinetic profiling for obtaining a balanced pharmacokinetic/dynamic profile. Our study adds to the knowledge regarding drug development and optimization of marine-isolated indole-based alkaloids for future iterative synthesis and pre-clinical investigations as multi-target anticancer agents.

18.
Antibiotics (Basel) ; 11(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35203781

RESUMO

Antimicrobial resistance is among the world's most urgent public health problems. Diminishing of the virulence of bacteria is a promising approach to decrease the development of bacterial resistance. Quorum sensing (QS) systems orchestrate the bacterial virulence in inducer-receptors manner. Bacteria can spy on the cells of the host by sensing adrenergic hormones and other neurotransmitters, and in turn, these neurotransmitters can induce bacterial pathogenesis. In this direction, α-adrenergic blockers were proposed as an anti-virulence agents through inhibiting the bacterial espionage. The current study aimed to explore the α-blockers' anti-QS activities. Within comprehensive in silico investigation, the binding affinities of seven α-adrenoreceptor blockers were evaluated towards structurally different QS receptors. From the best docked α-blockers into QS receptors, terazosin was nominated to be subjected for further in vivo and in vitro anti-QS and anti-virulence activities against Chromobacterium violaceum and Pseudomonas aeruginosa. Terazosin showed a significant ability to diminish the QS-controlled pigment production in C. violaceum. Moreover, Terazosin decreased the P. aeruginosa biofilm formation and down-regulated its QS-encoding genes. Terazosin protected mice from the P. aeruginosa pathogenesis. In conclusion, α-adrenergic blockers are proposed as promising anti-virulence agents as they hinder QS receptors and inhibit bacterial espionage.

19.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215223

RESUMO

Bacterial resistance to antibiotics is an increasing public health threat as it has the potential to affect people at any stage of life, as well as veterinary. Various approaches have been proposed to counteract the bacterial resistance development. Tackling bacterial virulence is one of the most promising approaches that confer several merits. The bacterial virulence is mainly regulated by a communication system known as quorum sensing (QS) system. Meanwhile, bacteria can sense the adrenergic hormones and eavesdrops on the host cells to establish their infection, adrenergic hormones were shown to enhance the bacterial virulence. In this study, ß-adrenoreceptor blockers were proposed not only to stop bacterial espionage on our cells but also as inhibitors to the bacterial QS systems. In this context, a detailed in silico study has been conducted to evaluate the affinities of twenty-two ß-blockers to compete on different structural QS receptors. Among the best docked and thermodynamically stable ß-blockers; atenolol, esmolol, and metoprolol were subjected to further in vitro and in vivo investigation to evaluate their anti-QS activities against Chromobacterium violaceum, Pseudomonas aeruginosa and Salmonella typhimurium. The three tested ß-blockers decreased the production of QS-controlled C. violaceum, and the formation of biofilm by P. aeruginosa and S. typhimurium. Additionally, the tested ß-blockers down-regulated the P. aeruginosa QS-encoding genes and S. typhimurium sensor kinase encoding genes. Furthermore, metoprolol protected mice against P. aeruginosa and S. typhimurium. Conclusively, these investigated ß-blockers are promising anti-virulence agents antagonizing adrenergic hormones induced virulence, preventing bacterial espionage, and blocking bacterial QS systems.

20.
Antibiotics (Basel) ; 11(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36358239

RESUMO

Salmonella enterica is a Gram-negative orofecal transmitted pathogen that causes a wide diversity of local and systemic illnesses. Salmonella enterica utilizes several interplayed systems to regulate its invasion and pathogenesis: namely, quorum sensing (QS) and type three secretion system (T3SS). In addition, S. enterica could sense the adrenergic hormones in the surroundings that enhance its virulence. The current study aimed to evaluate the ability of α-adrenoreceptor antagonist prazosin to mitigate the virulence of S. enterica serovar Typhimurium. The prazosin effect on biofilm formation and the expression of sdiA, qseC, qseE, and T3SS-type II encoding genes was evaluated. Furthermore, the prazosin intracellular replication inside macrophage and anti-virulence activity was evaluated in vivo against S. typhimurium. The current finding showed a marked prazosin ability to compete on SdiA and QseC and downregulate their encoding genes. Prazosin significantly downregulated the virulence factors encoding genes and diminished the biofilm formation, intracellular replication inside macrophages, and in vivo protected mice. To sum up, prazosin showed significant inhibitory activities against QS, T3SS, and bacterial espionage, which documents its considered anti-virulence activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA