Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397693

RESUMO

Freshwater can support the survival of the enteric pathogen Salmonella, though temporal Salmonella diversity in a large watershed has not been assessed. At 28 locations within the Susquehanna River basin, 10-liter samples were assessed in spring and summer over 2 years. Salmonella prevalence was 49%, and increased river discharge was the main driver of Salmonella presence. The amplicon-based sequencing tool, CRISPR-SeroSeq, was used to determine serovar population diversity and detected 25 different Salmonella serovars, including up to 10 serovars from a single water sample. On average, there were three serovars per sample, and 80% of Salmonella-positive samples contained more than one serovar. Serovars Give, Typhimurium, Thompson, and Infantis were identified throughout the watershed and over multiple collections. Seasonal differences were evident: serovar Give was abundant in the spring, whereas serovar Infantis was more frequently identified in the summer. Eight of the ten serovars most commonly associated with human illness were detected in this study. Crucially, six of these serovars often existed in the background, where they were masked by a more abundant serovar(s) in a sample. Serovars Enteritidis and Typhimurium, especially, were masked in 71 and 78% of samples where they were detected, respectively. Whole-genome sequencing-based phylogeny demonstrated that strains within the same serovar collected throughout the watershed were also very diverse. The Susquehanna River basin is the largest system where Salmonella prevalence and serovar diversity have been temporally and spatially investigated, and this study reveals an extraordinary level of inter- and intraserovar diversity.IMPORTANCESalmonella is a leading cause of bacterial foodborne illness in the United States, and outbreaks linked to fresh produce are increasing. Understanding Salmonella ecology in freshwater is of importance, especially where irrigation practices or recreational use occur. As the third largest river in the United States east of the Mississippi, the Susquehanna River is the largest freshwater contributor to the Chesapeake Bay, and it is the largest river system where Salmonella diversity has been studied. Rainfall and subsequent high river discharge rates were the greatest indicators of Salmonella presence in the Susquehanna and its tributaries. Several Salmonella serovars were identified, including eight commonly associated with foodborne illness. Many clinically important serovars were present at a low frequency within individual samples and so could not be detected by conventional culture methods. The technologies employed here reveal an average of three serovars in a 10-liter sample of water and up to 10 serovars in a single sample.


Assuntos
Rios/microbiologia , Salmonella/isolamento & purificação , Genômica , Filogenia , Salmonella/genética , Estações do Ano , Sorogrupo , Microbiologia da Água , Sequenciamento Completo do Genoma
2.
IJID Reg ; 7: 277-280, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234563

RESUMO

Background: Commercial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests were developed before variants with spike protein mutations emerged, leading to concerns that these tests have reduced sensitivity for detecting antibody responses in individuals infected with Omicron subvariants. This study was performed to evaluate Abbott ARCHITECT serologic assays, AdviseDx SARS-CoV-2 IgG II, and SARS-CoV-2 IgG for the detection of spike (S) and nucleocapsid (N) IgG antibody increases in vaccinated healthcare workers infected with Omicron subvariants. Methods: During the BA.1/2 and BA.4/5 waves, 171 SARS-CoV-2-infected individuals (122 in the BA.1/2 wave, 49 in the BA.4/5 wave) were tested for S and N IgG post infection. Sequencing and SARS-CoV-2 variant confirmation were performed on nasal swab samples from individuals infected during the BA.1/2 wave. Results: Twenty-seven Omicron sequence confirmed individuals in the BA.1/2 wave and all 49 in the BA.4/5 wave had pre-infection antibody data. Compared to pre-infection levels, post-infection S IgG increased 6.6-fold from 1294 ± 302 BAU/ml (mean ± standard error measurement) to 9796 ± 1252 BAU/ml (P < 0.001) during the BA.1/2 wave, and 3.6-fold from 1771 ± 351 BAU/ml to 8224 ± 943 BAU/ml (P < 0.001) during the BA.4/5 wave. N IgG increased post infection 19.1-fold from 0.2 ± 0.1 to 3.7 ± 0.5 (P < 0.001) during the BA.1/2 wave and 13.5-fold from 0.22 ± 0.1 to 3.2 ± 0.3 (P < 0.001) during the BA.4/5 wave. Among 159 infection-naïve individuals, positive N IgG levels were detected with a sensitivity of 88% in the 87 individuals who were tested between 14 days and 60 days post infection. Conclusions: The large increases in post-infection S IgG along with the N IgG sensitivity that was comparable to previously reported N IgG sensitivity data in unvaccinated individuals after Omicron infection, support the use of Abbott SARS-CoV-2 assays for detecting increased S IgG and seroconversion of N IgG in vaccinated individuals post Omicron infection. Given that 68% of the United States population is fully vaccinated, these results are of current relevance.

4.
J Phys Chem B ; 117(23): 7057-64, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23688053

RESUMO

The hydrogen ion is one of the most important species in aqueous solutions, as well as in protic ionic liquids (PILs). PILs are important potential alternatives to H2O for swelling the proton exchange membranes (PEMs) and improving the high-temperature performance of fuel cells. The hydrogen ion (H(+)) or hydronium (H3O(+)) solvation mechanism is not only a fundamental principle of acid/base chemistry in ionic liquids but also key to understanding the charge- and proton-transport properties of the PIL solutions. In this paper, a PIL system was prepared by mixing 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4) IL with an aqueous solution of a strong acid, HBF4. Water can be partially evaporated from the solution under a vacuum at room temperature. Conductivity and vibrational spectroscopy (IR and Raman) measurements were used in combination with density functional theory (DFT) calculations to characterize the molecular-level solvation of H(+) and H2O in the IL solution. When water is present at high molar fraction, the cations (BMI(+) and H(+)) and anions (BF4(-)) are both solvated by water and the solutions have high conductivity. After water evaporation, the PIL solution has excess H(+) and reduced conductivity, which is still significantly higher than that of pure BMIBF4. Vibrational spectroscopy suggests that the BMI(+) and BF4(-) ions are desolvated from water during the water evaporation. DFT calculations assist the interpretation of the vibrational spectroscopy and show that the remaining water is in the form of H3O(+) solvated by the IL molecular ions. Hence, the species remaining after evaporation is a ternary PIL consisting of BMI(+) cation, BF4(-) anion, and H3O(+) cation. The H3O(+) may be the principle charge carrier in the PIL solution and responsible for the high solution conductivity.


Assuntos
Boratos/química , Imidazóis/química , Líquidos Iônicos/química , Oniocompostos/química , Condutividade Elétrica , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA