RESUMO
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , DesidrataçãoRESUMO
Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
Assuntos
Biodiversidade , Mudança Climática , Florestas , Brasil , Dióxido de Carbono , Ecossistema , Estações do Ano , Árvores/classificação , Árvores/fisiologia , Clima Tropical , ÁguaRESUMO
Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes.
Assuntos
Ciclo do Carbono , Florestas , Características de História de Vida , Árvores , Carbono/metabolismo , Longevidade , Temperatura , Árvores/crescimento & desenvolvimentoRESUMO
Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
Assuntos
Biodiversidade , Inundações , Rios , Árvores , Brasil , FlorestasRESUMO
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.
Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima TropicalRESUMO
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.
Assuntos
RNA Longo não Codificante , Árvores , Florestas , Solo , TemperaturaRESUMO
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.
Assuntos
Ecologia , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Brasil , Dióxido de Carbono , Sequestro de Carbono , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Modelos de Riscos Proporcionais , Fatores de Risco , Clima TropicalRESUMO
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Temperatura Alta , Árvores/metabolismo , Clima Tropical , Aclimatação , Biomassa , Carbono/metabolismo , Planeta Terra , MadeiraRESUMO
PURPOSE: To report a case of a good visual outcome in a patient with bilateral multifocal syphilitic chorioretinitis, despite the late diagnosis. METHODS: Ophthalmologic examination, multimodal imaging, including fundus photography, angiography, and optical coherence tomography. RESULTS: The authors describe a 47-year-old heterosexual man with a bilateral multifocal syphilitic chorioretinitis that was lately diagnosed and despite that had a good visual outcome. CONCLUSION: The diagnosis of ocular syphilis is a challenge; however, once it has been made, even lately, it is eminently treatable.
Assuntos
Antibacterianos/uso terapêutico , Coriorretinite/diagnóstico , Diagnóstico Tardio , Infecções Oculares Bacterianas/diagnóstico , Imagem Multimodal , Sífilis/complicações , Acuidade Visual , Coriorretinite/tratamento farmacológico , Coriorretinite/etiologia , Infecções Oculares Bacterianas/tratamento farmacológico , Angiofluoresceinografia , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Sífilis/diagnóstico , Sífilis/tratamento farmacológico , Tomografia de Coerência ÓpticaRESUMO
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
Assuntos
Biodiversidade , Carbono/análise , Florestas , Plantas/química , Plantas/classificação , África , América , Ásia , Clima TropicalRESUMO
A Copa do Mundo Fifa une a maior parte dos brasileiros sob a condição de torcedores, desde antes mesmo da chegada da televisão ao país. Participa-se, durante a Copa do Mundo, não só de evento esportivo, mas também midiático. Ao redor do campeonato, orbitam diversos tipos de narrativas: ufanistas, publicitárias, noticiosas e até mesmo políticas. O advento dos recursos participativos da internet tornou possível a mensuração direta da resposta do público a estas mensagens. Este artigo pretende analisar como se deu a repercussão das imagens sobre a Copa do Mundo na rede social Twitter, e a natureza deste conteúdo quanto à origem destas mídias: criação do público, montagens e remixes, produções publicitárias ou da mídia tradicional. Esta análise será realizada a partir das dez imagens mais compartilhadas na rede social durante a fase eliminatória do campeonato, identificadas a partir de metodologia desenvolvida pelo LABIC/UFES.
Fifa's World Cup gathers the majority of Brazilian population under the condition of supporters, even before television broadcasting started in the country. During the event, people participate not only of a sportive experience, but also of a mediatic phenomenon. Around the competition there are several kind of narratives: vainglorious, publicity, news and even politics. The advent of participatory resources the internet has made possible the direct measurement of the public response to these messages. This article analyzes how was the impact of images on the World Cup in the social network Twitter, the nature of the content and the origin of these media: creation of the public, remixes, advertising productions or traditional media. This analysis will be performed from the ten most shared images on the social network during the championship, identified from the methodology developed by LABIC / UFES.
La Copa Mundial de la FIFA une la mayoría de los brasileños sob la condición de hinchas, antes mismo de la televisión llegar en el país. Se participa, durante él Mundial, no sólo del evento desportivo, pero también mediático. Alrededor de la competición, orbitan diferentes tipos de narrativas: vanagloriosas, de la publicidad, noticiosas y até mismo políticas. Él advenimiento de los recursos participativos de la internet hizo posible la mensuración en directo de la respuesta del público a estas imágenes. Este artículo pretende analizar como fue la repercusión de las imágenes (fotografías, ilustraciones, montajes o frames de videos) sobre él Mundial en la red social Twitter y la naturaleza de este contenido cuanto a la origen de estos medios: creación del público, montajes, remixes, producciones publicitarias o de medios oficialistas. Este análisis será realizada a partir de las diez imágenes más compartidas en la red social durante la competición, identificadas a partir de la metodologia desarollada por el Laboratorio de Estudios de la Imágen y Cibercultura de la Universidade Federal do Espírito Santo.
Assuntos
Futebol , Comunicação , Mídias SociaisRESUMO
Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.
A capacidade de reaproveitamento de nutrientes pela floresta está ligada à produção e decomposição da serrapilheira, sendo estes processos essenciais para manutenção da floresta, especialmente em regiões de solos nutricionalmente pobres. Intervenções humanas na floresta como a extração seletiva de madeira, podem ter fortes impactos sobre esses processos. Os objetivos deste trabalho foram estimar a produção de serrapilheira e avaliar a influência de fatores ambientais (área basal da vegetação, densidade de plantas, abertura de dossel, atributos físico-químicos do solo) e antrópicos (idade pós-exploração e área basal explorada) sobre esta produção, em áreas de floresta intactas e exploradas no sul da Amazônia, norte do estado de Mato Grosso. Este estudo foi conduzido em cinco áreas e a produção média anual de serrapilheira foi de 10,6 Mg ha-1 ano-1, superior aos valores geralmente encontrados para a floresta amazônica. Houve diferença entre a produção de serrapilheira entre as áreas de estudo. Os efeitos do histórico de exploração madeireira e da intensidade de exploração não foram significativos sobre a produção de serrapilheira. Foi observado o efeito da área basal da vegetação e da densidade de árvores sobre a produção de serrapilheira, destacando a importância das características da vegetação local para a produção de serrapilheira. Este estudo demonstrou que áreas de transição entre Amazônia-Cerrado tendem a apresentar uma maior produção de serrapilheira que regiões típicas de Cerrado e Amazônia, e estas são informações importantes para uma melhor compreensão da dinâmica de ciclagem de nutrientes e carbono nestas regiões de transição.
Assuntos
Ciclo do Carbono , Florestas , Nutrientes/análise , Conservação dos Recursos Naturais , Indústria da MadeiraRESUMO
ABSTRACT Visceral Leishmaniasis, also know as Kala-azar, is a parasitic tropical disease caused by protozoa of the genus Leishmania donovani. It is an endemic disease in many countries. It affects approximately 1,5 million people every year, and when associated with mal-nutrition and co-infection it may be fatal. Fever, hepatosplenomegaly, and pancytopenia is its typical clinical picture. Ocular manifestations of Kalaazar are relatively rare and can affect either anterior or posterior segment of the eye. We report a patient with kala-azar presenting intraretinal hemorrhages that regress completely after the successful treatment for visceral leishmaniasis.
RESUMO Leishmaniose visceral, também conhecida como calazar é uma doença tropical parasitária, causada pelo protozoário do gênero Leishmania donovan uma doença endêmica em muitos países. Afeta aproximadamente 1,5 milhões de pessoas durante todo ano e quando associada à desnutrição e coinfecção pode ser fatal. Febre, hepatoesplenomegalia e pancitopenia e o quadro típico. Manifestações oculares são raras e podem afetar tanto o segmento anterior como o posterior do olho. Relatamos o caso de um paciente com calazar e hemorragia intrarretiniana que regrediu após tratamento para leishmaniose visceral.