RESUMO
Understanding how older people respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical if we are to confront the coronavirus disease 2019 (COVID-19) pandemic and establish effective vaccination strategies. Immunosenescence reduces the ability to respond to neoantigens and may compromise the life of infected individuals. Here, we analyzed the immunological memory to SARS-CoV-2 in 102 recovered patients aged over 60 years several months after the infection had been resolved. Specific memory T lymphocytes against the virus were measured by interferon-γ (IFN-γ) and granzyme B release by ELISpot; memory B-lymphocyte responses were quantified by detection of anti-S IgG1 producer cells by ELISpot and anti-S and anti-N antibodies were determined by enzyme-linked immunosorbent assay (ELISA). Memory T lymphocytes were found in peripheral blood of most of the studied donors, more than 7 months after the infection in some of them. Fewer patients maintained memory B lymphocytes, but antibodies, mainly anti-S, were highly durable and positively correlated with T responses. More robust humoral responses were found in patients who had more severe symptoms and had been admitted to hospital. We concluded that specific immunity against SARS-CoV-2 is effectively preserved regardless of age, despite the great heterogeneity of their immune responses, and that memory T lymphocytes and anti-S IgG might be more durable than memory B cells and anti-N IgG.
Assuntos
Anticorpos Antivirais/imunologia , COVID-19 , Imunidade Celular/fisiologia , Imunidade Humoral , Memória Imunológica , SARS-CoV-2 , Idoso , Idoso de 80 Anos ou mais , ELISPOT , Feminino , Humanos , Imunoglobulina G , Masculino , Células B de Memória , Células T de Memória , Pessoa de Meia-IdadeRESUMO
Alpha-L-fucosidase (FUC) is a glycosidase involved in the degradation of fucose-containing glycoconjugates. A cDNA representing the complete sequence of human FUC was inserted into the prokaryotic expression vector pGEX-2T. High levels of the glutathione S-transferase (GST) fusion protein were detected in Escherichia coli cells after induction with isopropyl thio-beta-D-galactopyranoside. The GST-FUC protein was mostly found as inclusion bodies and attempts to optimise its expression as a soluble form were unsuccessful. Nevertheless, the recombinant protein was purified by affinity chromatography on glutathione-sepharose and its fucosidase activity was characterised. After thrombin cleavage of the GST tag, the FUC precursor protein was purified by electro-elution.