RESUMO
Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.
Assuntos
Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Fator de Transcrição STAT1/metabolismo , Animais , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosforilação , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/metabolismo , Fator de Transcrição STAT1/genéticaRESUMO
BACKGROUND: Whereas 40 % to 70 % of papillary thyroid carcinomas (PTCs) are characterized by a BRAF mutation (BRAFmut), unified biomarkers for the genetically heterogeneous group of BRAF wild type (BRAFwt) PTCs are not established yet. Using state-of-the-art technology we compared RNA expression profiles between conventional BRAFwt and BRAFmut PTCs. METHODS: Microarrays covering 36,079 reference sequences were used to generate whole transcript expression profiles in 11 BRAFwt PTCs including five micro PTCs, 14 BRAFmut PTCs, and 7 normal thyroid specimens. A p-value with a false discovery rate (FDR) < 0.05 and a fold change > 2 were used as a threshold of significance for differential expression. Network and pathway utilities were employed to interpret significance of expression data. BRAF mutational status was established by direct sequencing the hotspot region of exon 15. RESULTS: We identified 237 annotated genes that were significantly differentially expressed between BRAFwt and BRAFmut PTCs. Of these, 110 genes were down- and 127 were upregulated in BRAFwt compared to BRAFmut PTCs. A number of molecules involved in thyroid hormone metabolism including thyroid peroxidase (TPO) were differentially expressed between both groups. Among cancer-associated molecules were ERBB3 that was downregulated and ERBB4 that was upregulated in BRAFwt PTCs. Two microRNAs were significantly differentially expressed of which miR492 bears predicted functions relevant to thyroid-specific molecules. The protein kinase A (PKA) and the G protein-coupled receptor pathways were identified as significantly related signaling cascades to the gene set of 237 genes. Furthermore, a network of interacting molecules was predicted on basis of the differentially expressed gene set. CONCLUSIONS: The expression study focusing on affected genes that are differentially expressed between BRAFwt and BRAFmut conventional PTCs identified a number of molecules which are connected in a network and affect important canonical pathways. The identified gene set adds to our understanding of the tumor biology of BRAFwt and BRAFmut PTCs and contains genes/biomarkers of interest.
Assuntos
Carcinoma/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Carcinoma/patologia , Carcinoma Papilar , Análise por Conglomerados , Análise Mutacional de DNA , Demografia , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Receptores Acoplados a Proteínas G/genética , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologiaRESUMO
Atherosclerosis is a chronic inflammatory disease characterized by the formation of lipid-rich, fibrous plaques within the arterial wall of medium and large arteries. Plaques prone to rupture are typically rich in lipids and pro-inflammatory markers. Cells within the plaque can take up lipids via different mechanisms leading to the formation and accumulation of lipid-rich foam cells, a key hallmark of the disease. Evaluation of plaque burden and lipid content is hence important to determine disease progression and severity. This chapter describes the most commonly used staining methods that enable visualization and analysis of mouse atherosclerotic plaques. These methods include en face preparation of mouse aorta, and staining sections of arteries using hematoxylin and eosin, Oil Red O, and Masson's Trichrome.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aorta , Hematoxilina , Lipídeos/análise , CamundongosRESUMO
Atherosclerotic plaques are highly diverse and heterogeneous structures, even within the same individual, and can vary depending on its anatomical location within the vascular bed. Early in the disease and throughout its progression, immune cells infiltrate the lesion, contributing to the plaque phenotype via different mechanisms. Detailed characterization of constituent cell populations within plaques is hence required for more accurate assessment of disease severity and inflammatory burden. A wide range of fluorophore-conjugated antibodies targeted to key cell types implicated in all stages of the disease are commercially available, enabling visualization of the dynamic cellular landscape present within lesions. This chapter describes the use of immunofluorescence staining of atherosclerotic plaque sections to study plaque cellularity and expression of key markers.
Assuntos
Placa Aterosclerótica , Humanos , Macrófagos/patologia , Placa Aterosclerótica/patologiaRESUMO
Although in vitro model systems are useful for investigation of atherosclerosis-associated processes, they represent simplification of complex events that occur in vivo, which involve interactions between many different cell types together with their environment. The use of animal model systems is important for more in-depth insights of the molecular mechanisms underlying atherosclerosis and for identifying potential targets for agents that can prevent plaque formation and even reverse existing disease. This chapter will provide a survey of such animal models and associated techniques that are routinely used for research of atherosclerosis in vivo.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/metabolismo , Modelos Animais de Doenças , Placa Aterosclerótica/metabolismoRESUMO
Healthcare-associated infections are widely considered one of the most common unfavorable outcomes of healthcare delivery. Ventilator-associated pneumonia, central line-associated bloodstream infections, and catheter-associated urinary tract infections are examples of healthcare-associated infections. The current study was a retrospective study conducted at a public hospital in Unaizah, Saudi Arabia, to investigate the frequency of healthcare-associated illnesses and adherence to healthcare-associated infection prevention techniques in the year 2021. Surgical site infections occurred at a rate of 0.1%. The average number of catheter-associated urinary tract infections per 1000 catheter days was 0.76. The average number of central line-associated bloodstream infections per 1000 central line days was 2.6. The rate of ventilator-associated pneumonia was 1.1 per 1000 ventilator days on average. The average number of infections caused by multidrug-resistant organisms per 1000 patient days was 2.8. Compliance rates were 94%, 100%, 99%, and 76% for ventilator-associated pneumonia, central line-associated bloodstream infections, catheter-associated urinary tract infections, and hand hygiene bundles, respectively. It is critical to participate in more educational events and workshops, particularly those that emphasize hand cleanliness and personal safety equipment.
RESUMO
SCOPE: Previous studies show that Lab4 probiotic consortium plus Lactobacillus plantarum CUL66 (Lab4P) reduces diet-induced weight gain and plasma cholesterol levels in C57BL/6J mice fed a high fat diet (HFD). The effect of Lab4P on atherosclerosis is not known and is therefore investigated. METHODS AND RESULTS: Atherosclerosis-associated parameters are analyzed in LDL receptor deficient mice fed HFD for 12 weeks alone or supplemented with Lab4P. Lab4P increases plasma HDL and triglyceride levels and decreases LDL/VLDL levels. Lab4P also reduces plaque burden and content of lipids and macrophages, indicative of dampened inflammation, and increases smooth muscle cell content, a marker of plaque stabilization. Atherosclerosis arrays show that Lab4P alters the liver expression of 19 key disease-associated genes. Lab4P also decreases the frequency of macrophages and T-cells in the bone marrow. In vitro assays using conditioned media from probiotic bacteria demonstrates attenuation of several atherosclerosis-associated processes in vitro such as chemokine-driven monocytic migration, proliferation of monocytes and macrophages, foam cell formation and associated changes in expression of key genes, and proliferation and migration of vascular smooth muscle cells. CONCLUSION: This study provides new insights into the anti-atherogenic actions of Lab4P together with the underlying mechanisms and supports further assessments in human trials.
Assuntos
Aterosclerose/terapia , Fígado/fisiologia , Placa Aterosclerótica/terapia , Probióticos/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células da Medula Óssea , Colesterol/sangue , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Lactobacillus plantarum , Lipídeos/sangue , Masculino , Camundongos Mutantes , Tamanho do Órgão , Placa Aterosclerótica/patologia , Receptores de LDL/genética , Baço/crescimento & desenvolvimentoRESUMO
Hashimoto's thyroiditis (HT) is present in the background of around 30% of papillary thyroid carcinomas (PTCs). The genetic predisposition effect of this autoimmune condition is not thoroughly understood. We analyzed the microarray expression profiles of 13 HT, eight PTCs with (w/) coexisting HT, six PTCs without (w/o) coexisting HT, six micro PTCs (mPTCs), and three normal thyroid (TN) samples. Based on a false discovery rate (FDR)-adjusted p-value ≤ 0.05 and a fold change (FC) > 2, four comparison groups were defined, which were HT vs. TN; PTC w/ HT vs. TN; PTC w/o HT vs. TN; and mPTC vs. TN. A Venn diagram displayed 15 different intersecting and non-intersecting differentially expressed gene (DEG) sets, of which a set of 71 DEGs, shared between the two comparison groups HT vs. TN â© PTC w/ HT vs. TN, harbored the relatively largest number of genes related to immune and inflammatory functions; oxidative stress and reactive oxygen species (ROS); DNA damage and DNA repair; cell cycle; and apoptosis. The majority of the 71 DEGs were upregulated and the most upregulated DEGs included a number of immunoglobulin kappa variable genes, and other immune-related genes, e.g., CD86 molecule (CD86), interleukin 2 receptor gamma (IL2RG), and interferon, alpha-inducible protein 6 (IFI6). Upregulated genes preferentially associated with other gene ontologies (GO) were, e.g., STAT1, MMP9, TOP2A, and BRCA2. Biofunctional analysis revealed pathways related to immunogenic functions. Further data analysis focused on the set of non-intersecting 358 DEGs derived from the comparison group of HT vs. TN, and on the set of 950 DEGs from the intersection of all four comparison groups. In conclusion, this study indicates that, besides immune/inflammation-related genes, also genes associated with oxidative stress, ROS, DNA damage, DNA repair, cell cycle, and apoptosis are comparably more deregulated in a data set shared between HT and PTC w/ HT. These findings are compatible with the conception of a genetic sequence where chronic inflammatory response is accompanied by deregulation of genes and biofunctions associated with oncogenic transformation. The generated data set may serve as a source for identifying candidate genes and biomarkers that are practical for clinical application.
Assuntos
Perfilação da Expressão Gênica , Doença de Hashimoto/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adolescente , Adulto , Idoso , Transformação Celular Neoplásica/genética , Feminino , Predisposição Genética para Doença , Doença de Hashimoto/complicações , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/complicações , Neoplasias da Glândula Tireoide/complicações , Regulação para CimaRESUMO
BACKGROUND: The molecular etiology of thyroid carcinoma (TC) and other thyroid diseases which may present malignant precursor lesions is not fully explored yet. The purpose of this study was to estimate frequency, type and clinicopathological value of BRAF exon 15 mutations in different types of cancerous and non-cancerous thyroid lesions originating in an ethnically diverse population. METHODS: BRAF exon 15 was sequenced in 381 cases of thyroid lesions including Hashimoto´s thyroiditis, nodular goiters, hyperplastic nodules, follicular adenomas (FA), papillary TC (PTC), follicular variant PTC (FVPTC), microcarcinomas of PTC (micro PTC; tumor size ≤ 1 cm), follicular TC (FTC), and non-well differentiated TC (non-WDTC). RESULTS: We identified BRAF mutations in one of 69 FA, 72 of 115 (63%) PTC, seven of 42 (17%) FVPTC, 10 of 56 (18%) micro PTC, one of 17 (6%) FTC, and one of eight (13%) non-WDTC. Most of the cases showed the common V600E mutation. One case each of PTC, FVPTC, and FTC harbored a K601E mutation. A novel BRAF mutation was identified in a FA leading to deletion of threonine at codon 599 (p.T599del). A rare 3-base pair insertion was detected in a stage III PTC resulting in duplication of threonine at codon 599 (p.T599dup). Patients with PTC harboring no BRAF mutation (BRAFwt) were on average younger than those with a BRAF mutation (BRAFmut) in the PTC (36.6 years vs. 43.8 years). Older age (≥ 45 years) in patients with PTC was significantly associated with tumor size ≥ 4 cm (P = 0.018), vessel invasion (P = 0.004), and distant metastasis (P = 0.001). Lymph node (LN) involvement in PTC significantly correlated with tumor size (P = 0.044), and vessel invasion (P = 0.013). Of notice, taken the whole TC group, family history of thyroid disease positively correlated with capsular invasion (P = 0.025). CONCLUSIONS: Older age is manifold associated with unfavorable tumor markers in our series. The K601E identified in a PTC, FVPTC, and FTC seems to be more distributed among different histological types of TC than previously thought. The T599del is a yet undescribed mutation and the rare T599dup has not been reported as a mutation in PTC so far.