Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 27(6): 1100-1109, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34114267

RESUMO

BACKGROUND: Monitoring the transcutaneous permeation of exogenous molecules using conventional techniques generally requires long pre-analytical preparation or labelling of samples. However, Raman spectroscopy is a label-free and non-destructive method which provides spatial distribution of tracked actives in skin. The aim of our study was to prove the interest of Raman imaging coupled with multivariate curve resolution alternating least square (MCR-ALS) analysis in monitoring retinol penetration into frozen and living human skin. MATERIALS AND METHODS: After topical treatment of skin samples by free or encapsulated retinol, thin cross sections were analysed by Raman imaging (up to 100 µm depth). Mann-Whitney test was used to identify retinol spectroscopic markers in skin. MCR-ALS was used to estimate retinol contribution in Raman spectral images. Heat maps were constructed to compare the distribution of free and encapsulated retinol in skin models. RESULTS: We identified the bands at 1158, 1196 and 1591 cm-1 as specific features for monitoring retinol in skin. Moreover, our MCR-ALS results showed an improvement of retinol penetration (up to 30 µm depth) with the encapsulated form as well as storage reservoir formation in stratum corneum, for each skin model. Finally, greater retinol penetration into living skin was observed. CONCLUSION: This study shows a proof of concept for the evaluation of retinol penetration in skin using Raman imaging coupled with MCR-ALS. This concept needs to be validated on more subjects to include inter-individual variability but also other factors affecting skin permeation (age, sex, pH, etc). Our study can be extended to other actives.


Assuntos
Pele , Vitamina A , Humanos , Análise dos Mínimos Quadrados , Análise Multivariada , Pele/diagnóstico por imagem , Análise Espectral Raman
2.
Anal Chem ; 92(24): 15745-15756, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33225709

RESUMO

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.

3.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045217

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

4.
Analyst ; 145(8): 2945-2957, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32110793

RESUMO

Raman spectroscopy is a candidate technique for diagnosis applications in medicine due to its high molecular specificity. Optimizing the pre-treatment applied for Raman data is important for exploiting Raman signals and ensuring their relevance in medical diagnosis. One of the crucial steps in data pre-processing, normalization, can affect significantly the result interpretation. To select the appropriate normalization method, a strategy based on validity indices (VI) is proposed in this study. VI are based on measuring the quality of data partitioning without involving a full sequence of supervised classification. The approach was tested on Raman data acquired from control and in vitro glycated proteins (albumin and collagen). Protein glycation is a process involved in the molecular ageing of tissues that leads to the formation of products altering the functional and structural properties of proteins. Different methods of normalization were applied on the data sets: integrated intensity of the phenylalanine band, integrated intensity of the amide I band, standard normal variate (SNV), multiplicative signal correction (MSC), and extended multiplicative signal correction (EMSC) that performs simultaneously baseline correction and normalization. Following normalization, principal component analysis (PCA) was applied and VI were calculated from PCA scores resulting from each of the normalization methods mentioned. Based on VI quantitative values, our experiments permit to illustrate the effect of normalization on the data separability of control and glycated samples, and to determine the most appropriate normalization and simultaneously the most discriminant principal components to exploit vibrational information associated with glycation-induced modifications. In parallel, principal component analysis - linear discriminant analysis (PCA-LDA) was carried out for positioning the interest of VI in regard to a common chain of data processing.


Assuntos
Colágeno Tipo I/análise , Produtos Finais de Glicação Avançada/análise , Albumina Sérica Humana/análise , Animais , Análise Discriminante , Humanos , Análise de Componente Principal , Ratos , Análise Espectral Raman
5.
Analyst ; 145(8): 3157, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32202269

RESUMO

Correction for 'Towards normalization selection of Raman data in the context of protein glycation: application of validity indices to PCA processed spectra' by Fatima Alsamad et al., Analyst, 2020, DOI: 10.1039/c9an02155h.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119382, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461140

RESUMO

Non-enzymatic glycation is a post-translational modification of long-lived matrix proteins such as type I collagen. It occurs during aging and leads to the formation of advanced glycation end-products (AGEs). AGE accumulation is associated with severe complications in chronic and age-related diseases. The assessment of modifications induced by this (patho)physiological process represents an interest in biology and medicine for a better patient care. The objective of our work was to position the interest of Raman spectroscopy in the quantification of collagen glycation. Two types of in vitro glycation were used by incubating collagen samples, at different durations, with ribose or glyoxylic acid; these reducing agents acting on the chemical specificity of the glycation reaction. Glycation efficiency was evaluated by the liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) quantification of carboxymethyllysine (CML) and pentosidine, which are among the most studied AGEs. Raman data were processed by PCA coupled to validity indices and Lasso regression as multivariate analysis tools. Regression models were constructed by considering the LC-MS/MS results as reference values. A marked variability was observed within the Raman datasets making difficult the identification of spectral differences between control and ribose-treated collagen samples. By taking advantage of the chemical specificity of the glyoxylic acid treatment leading to CML formation, on one hand, and the feature selection included in the Lasso algorithm, on the other hand, Raman markers associated with glycation were identified. The assigned vibrations corresponded to modifications of side chains of collagen. In addition, a threshold of CML concentration was determined as quantitative indicator of the applicability of Raman spectroscopy for potential patient follow-up purposes. Although lacking in sensitivity to directly detect AGEs in collagen, Raman spectroscopy allows to highlight the molecular modifications of collagen induced by glycation.


Assuntos
Produtos Finais de Glicação Avançada , Análise Espectral Raman , Cromatografia Líquida , Colágeno , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA