Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(4): 2042-2050, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31935077

RESUMO

A class of γ-cyclodextrin-containing hybrid frameworks (CD-HFs) has been synthesized, employing γ-cyclodextrin (γ-CD) as the primary building blocks, along with 4-methoxysalicylate (4-MS-) anions as the secondary building blocks. CD-HFs are constructed through the synergistic exploitation of coordinative, electrostatic, and dispersive forces. The syntheses have been carried out using an organic counteranion co-assembly strategy, which allows for the introduction of 4-MS-, in place of inorganic OH-, into the cationic γ-CD-containing metal-organic frameworks (CD-MOFs). Although the packing arrangement of the γ-CD tori in the solid-state superstructure of CD-HFs is identical to that of the previously reported CD-MOFs, CD-HFs crystallize with lower symmetry and in the cuboid space group P43212-when compared to CD-MOF-1, which has the cubic unit cell of I432 space group-on account of the chiral packing of the 4-MS- anions in the CD-HF superstructures. Importantly, CD-HFs have ultramicroporous apertures associated with the pore channels, a significant deviation from CD-MOF-1, as a consequence of the contribution from the 4-MS- anions, which serve as supramolecular baffles. In gas adsorption-desorption experiments, CD-HF-1 exhibits a Brunauer-Emmett-Teller (BET) surface area of 306 m2 g-1 for CO2 at 195 K, yet does not uptake N2 at 77 K, confirming the difference in porosity between CD-HF-1 and CD-MOF-1. Furthermore, the 4-MS- anions in CD-HF-1 can be exchanged with OH- anions, leading to an irreversible single-crystal to single-crystal transformation, with rearrangement of coordinated metal ions. Reversible transformations were also observed in CD-MOF-1 when OH- ions were exchanged for 4-MS- anions, with the space group changing from I432 to R32. This organic counteranion co-assembly strategy opens up new routes for the construction of hybrid frameworks, which are inaccessible by existing de novo MOF assembly methodologies.

2.
J Am Chem Soc ; 141(44): 17783-17795, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31526001

RESUMO

Tessellation of organic polygons though [π···π] and charge-transfer (CT) interactions offers a unique opportunity to construct supramolecular organic electronic materials with 2D topologies. Our approach to exploring the 3D topology of 2D tessellations of a naphthalene diimide-based molecular triangle (NDI-Δ) reveals that the 2D molecular arrangement is sensitive to the identity of the solvent and solute concentrations. Utilization of nonhalogenated solvents, combined with careful tailoring of the concentrations, results in NDI-Δ self-assembling though [π···π] interactions into 2D honeycomb triangular and hexagonal tiling patterns. Cocrystallization of NDI-Δ with tetrathiafulvalene (TTF) leads systematically to the formation of 2D tessellations as a result of superstructure-directing CT interactions. Different solvents lead to different packing arrangements. Using MeCN, CHCl3, and CH2Cl2, we identified three sets of cocrystals, namely CT-A, CT-B, and CT-C, respectively. Solvent modulation plays a critical role in controlling not only the NDI-Δ:TTF stoichiometric ratios and the molecular arrangements in the crystal superstructures, but also prevents the inclusion of TTF guests inside the cavities of NDI-Δ. Confinement of TTF inside the NDI-Δ cavities in the CT-A superstructure enhances the CT character with the observation of a broad absorption band in the NIR region. In the CT-B superstructure, the CHCl3 lattice molecules establish a set of [Cl···Cl] and [Cl···S] intermolecular interactions, leading to the formation of a hexagonal grid of solvent in which NDI-Δ forms a triangular grid. In the CT-C superstructure, three TTF molecules self-assemble, forming a supramolecular isosceles triangle TTF-Δ, which tiles in a plane alongside the NDI-Δ, producing a 3 + 3 honeycomb tiling pattern of the two different polygons. Solid-state spectroscopic investigations on CT-C revealed the existence of an absorption band at 2500 nm, which on the basis of TDDFT calculations, was attributed to the mixed-valence character between two TTF•+ radical cations and one neutral TTF molecule.

3.
J Am Chem Soc ; 141(44): 17472-17476, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31622089

RESUMO

Artificial molecular machines (AMMs) built from mechanically interlocked molecules (MIMs) can use energy ratchets to control the unidirectional motion of their component parts. These energy ratchets are operated by the alteration of kinetic barriers and thermodynamic wells, which are, in turn, determined by the switching on and off of noncovalent interactions. Previously, we have developed artificial molecular pumps (AMPs) capable of pumping rings consecutively onto a collecting chain as part of a molecular dumbbell, leading to the formation of rotaxanes. Here, we report a molecular dual pump (MDP) consisting of two individual AMPs linked in a head-to-tail fashion, wherein a single ring is pumped, in a linear manner, on and off a dumbbell involving a [2]rotaxane intermediate by exploiting the redox properties of the two pumps. This MDP, defined by the finely tuned noncovalent interactions and fueled by either chemicals or electricity, utilizes an energy ratchet mechanism to capture a ring and subsequently release it back into solution. The unidirectional motion and the resulting controlled capture and release of the ring were followed by 1D and 2D 1H NMR spectroscopy and supported by control experiments. This molecular dual pump may be considered to be a forerunner of AMMs that are capable of pumping rings across a membrane in a way similar to how bacteriorhodopsin transports protons from one side of a membrane to the other under the influence of light. Such extensive multicomponent AMMs can lead potentially to molecular transporting platforms with positional and directional control of cargo uptake and release when, and only when, instructed.

4.
J Am Chem Soc ; 141(47): 18727-18739, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31580664

RESUMO

A series of donor-acceptor (D-A) naphthalene-viologen-based cyclophanes of different shapes, sizes, and symmetries have been synthesized and characterized. Solution optical studies on these cyclophanes reveal the existence of photoinduced intramolecular charge transfer (CT) at 465 nm from naphthalene (D) to viologen (A) units, resulting in a conformational change in the viologen units and the emergence of an emission at 540 nm. The D-A cyclophanes with box-like and hexagon-like shapes offer an opportunity to control the arrangement within 2D layers where D-A interactions direct the superstructures. While a box-like 2,6-disubstituted naphthalene-based tetracationic cyclophane does not form square tiling patterns, a truncated hexagon-like congener self-assembles to form a hexagonal superstructure which, in turn, adopts a hexagonal tiling pattern. Tessellation of the more rigid and highly symmetrical 2,7-disubstituted naphthalene-based cyclophanes leads to the formation of 2D square and honeycomb tiling patterns with the box-like and hexagon-like cyclophanes, respectively. Co-crystallization of the box-like cyclophanes with tetrathiafulvalene (TTF) results in the formation of D-A CT interactions between TTF and viologen units, leading to tubular superstructures. Co-crystallization of the hexagon-like cyclophane with TTF generates well-ordered and uniform tubular superstructures in which the TTF-viologen CT interactions and naphthalene-naphthalene [π···π] interactions propagate with 2D topology. In the solid state, the TTF-cyclophane co-crystals are paramagnetic and display dual intra- and intermolecular CT behavior at ∼470 and ∼1000 nm, respectively, offering multi-responsive materials with potential pathways for electron transport.

5.
Polymers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208240

RESUMO

In this work, copper-mediated reversible deactivation radical polymerization (RDRP) of homo-polyacrylamides was conducted in aqueous solutions at 0.0 °C. Various degrees of polymerization (DP = 20, 40, 60, and 80) of well-defined water-soluble homopolymers were targeted. In the absence of any significant undesirable side reactions, the dispersity of polydiethylacrylamide (PDEA) and polydimethylacrylamide (PDMA) was narrow under controlled polymerization conditions. To accelerate the polymerization rate, disproportionation of copper bromide in the presence of a suitable ligand was performed prior to polymerization. Full conversion of the monomer was confirmed by nuclear magnetic resonance (NMR) analysis. Additionally, the linear evolution of the polymeric chains was established by narrow molecular weight distributions (MWDs). The values of theoretical and experimental number average molecular weights (Mn) were calculated, revealing a good matching and robustness of the system. The effect of decreasing the reaction temperature on the rate of polymerization was also investigated. At temperatures lower than 0.0 °C, the controlled polymerization and the rate of the process were not affected.

6.
Polymers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960878

RESUMO

Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.

7.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35012138

RESUMO

The aqueous Cu(0)-mediated reversible deactivation radical polymerization (RDRP) of triblock copolymers with two block sequences at 0.0 °C is reported herein. Well-defined triblock copolymers initiated from PHEAA or PDMA, containing (A) 2-hydroxyethyl acrylamide (HEAA), (B) N-isopropylacrylamide (NIPAM) and (C) N, N-dimethylacrylamide (DMA), were synthesized. The ultrafast one-pot synthesis of sequence-controlled triblock copolymers via iterative sequential monomer addition after full conversion, without any purification steps throughout the monomer additions, was performed. The narrow dispersities of the triblock copolymers proved the high degree of end-group fidelity of the starting macroinitiator and the absence of any significant undesirable side reactions. Controlled chain length and extremely narrow molecular weight distributions (dispersity ~1.10) were achieved, and quantitative conversion was attained in as little as 52 min. The full disproportionation of CuBr in the presence of Me6TREN in water prior to both monomer and initiator addition was crucially exploited to produce a well-defined ABC-type triblock copolymer. In addition, the undesirable side reaction that could influence the living nature of the system was investigated. The ability to incorporate several functional monomers without affecting the living nature of the polymerization proves the versatility of this approach.

8.
Chem Sci ; 11(1): 107-112, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110362

RESUMO

Although host-guest pairing interactions between bisradical dicationic cyclobis(paraquat-p-phenylene) (BB2(˙+) ) and the bipyridinium radical cation (BIPY˙+ ) have been studied extensively, host molecules other than BB2(˙+) are few and far between. Herein, four bisradical dicationic cyclophanes with tunable cavity sizes are investigated as new bisradical dicationic hosts for accommodating the methyl viologen radical cation (MV˙+ ) to form trisradical tricationic complexes. The structure-property relationships between cavity sizes and binding affinities have been established by comprehensive solution and solid-state characterizations as well as DFT calculations. The association constants of the four new trisradical tricationic complexes are found to range between 7400 and 170 000 M-1, with the strongest one being 4.3 times higher than that for [MV⊂BB]3(˙+) . The facile accessibility and tunable stability of these new trisradical tricationic complexes make them attractive redox-controlled recognition motifs for further use in supramolecular chemistry and mechanostereochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA