Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Noncoding RNA Res ; 9(4): 995-1008, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39026605

RESUMO

To date, the epigenetic signature of preeclampsia (PE) is not completely deciphered. Oxidative stress-responsive long non-coding RNAs (lncRNAs) are deregulated in preeclamptic placenta; however, their circulating profiles and diagnostic abilities are still unexplored. We investigated serum redox-sensitive lncRNAs TUG1, H19, and NEAT1, and their target miR-29b/cystine/neutral/dibasic amino acids transporter solute carrier family 3, member 1 (SLC3A1) as potential non-invasive biomarkers of PE risk, onset, and severity. We recruited 82 patients with PE and 78 healthy pregnant women. We classified PE patients into early-onset (EOPE) and late-onset (LOPE) subgroups at a cut-off 34 gestational weeks and into severe and mild PE subgroups by blood pressure and proteinuria criteria. Bioinformatics analysis was employed to select lncRNAs/microRNA/target gene interactions. Serum H19, NEAT1, and SLC3A1 mRNA expression were reduced, meanwhile miR-29b levels were elevated, whereas there was no significant difference in TUG1 levels between PE patients and healthy pregnancies. Serum H19 levels were lower, whereas miR-29b levels were higher in EOPE versus LOPE. Serum miR-29b and H19 levels were higher in severe versus mild PE. ROC analysis identified serum H19, NEAT1, miR-29b, and SLC3A1 as potential diagnostic markers, with H19 (AUC = 0.818, 95%CI = 0.744-0.894) and miR-29b (AUC = 0.82, 95%CI = 0.755-0.885) were superior discriminators. Only H19 and miR-29b discriminated EOPE and severe PE cases. In multivariate logistic analysis, miR-29b and H19 were associated with EOPE, using maternal age and gestational age as covariates, while miR-29b was associated with severe PE, using maternal age as covariate. Studied markers were correlated with clinical and ultrasound data in the overall PE group. Serum H19 and TUG1 were negatively correlated with albuminuria in EOPE and LOPE, respectively. NEAT1 and SLC3A1 were correlated with ultrasound data in EOPE. Likewise, TUG1, miR-29b, and SLC3A1 showed significant correlations with ultrasound data in LOPE. Conclusively, this study configures SLC3A1 expression as a novel potential serum biomarker of PE and advocates serum H19 and miR-29b as biomarkers of EOPE and miR-29b as a biomarker of PE severity.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39065759

RESUMO

The reproductive system of males is adversely impacted by lead (Pb), a toxic heavy metal. The present study examined arbutin, a promising hydroquinone glycoside, for its potential ameliorative impact against Pb-induced testicular impairment in rats. The testicular injury was induced by the intraperitoneal administration of Pb acetate (20 mg/kg/day) for 10 consecutive days. Thirty-six rats were divided into six experimental groups (n = 6 per group): control, control treated with oral arbutin (250 mg/kg), control treated with intraperitoneal arbutin (75 mg/kg), untreated Pb, Pb treated with oral arbutin, and Pb treated with intraperitoneal arbutin. The treatments were administered daily for 10 days. Arbutin was administered by the oral and intraperitoneal routes to compare the efficacy of both routes in mitigating Pb acetate-induced testicular dysfunction. The current data revealed that both oral and intraperitoneal administration of arbutin significantly enhanced serum testosterone and sperm count/motility, indicating the amelioration of testicular dysfunction. In tandem, both routes lowered testicular histopathological aberrations and Johnsen's damage scores. These favorable outcomes were driven by dampening testicular oxidative stress, evidenced by lowered lipid peroxidation and increased glutathione and catalase antioxidants. Moreover, arbutin lowered testicular p-JAK2 and p-STAT3 levels, confirming the inhibition of the JAK2/STAT3 pro-inflammatory pathway. In tandem, arbutin suppressed the testicular NLRP3/caspase-1/NF-B axis and augmented the cytoprotective PK2/PKR2 pathway. Notably, intraperitoneal arbutin at a lower dose prompted a more pronounced mitigation of Pb-induced testicular dysfunction compared to oral administration. In conclusion, arbutin ameliorates Pb-evoked testicular damage by stimulating testicular antioxidants and the PK2/PKR2 pathway and inhibiting the JAK2/STAT3 and NLRP3/caspase-1 pro-inflammatory pathways. Hence, arbutin may be used as an adjunct agent for mitigating Pb-induced testicular impairment.

3.
Int Immunopharmacol ; 138: 112640, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981225

RESUMO

As a severe neurological disorder, Parkinson's disease (PD) is distinguished by dopaminergic neuronal degeneration in the substantia nigra (SN), culminating in motor impairments. Several studies have shown that activation of the AMPK/SIRT1/PGC1α pathway contributes to an increase in mitochondrial biogenesis and is a promising candidate for the management of PD. Furthermore, turning on the AMPK/SIRT1/PGC1α pathway causes autophagy activation, which is fundamental for maintaining neuronal homeostasis. Interestingly, ezetimibe is an antihyperlipidemic agent that was recently reported to possess pleiotropic properties in neurology by triggering the phosphorylation and activation of AMPK. Thus, our study aimed to investigate the neuroprotective potential of ezetimibe in rats with rotenone-induced PD by activating AMPK. Adult male Wistar rats received rotenone (1.5 mg/kg, s.c.) every other day for 21 days to induce experimental PD. Rats were treated with ezetimibe (5 mg/kg/day, i.p.) 1 h before rotenone. Ezetimibe ameliorated the motor impairments in open field, rotarod and grip strength tests, restored striatal dopamine and tyrosine hydroxylase in the SN, up-regulated p-AMPK, SIRT1, and PGC1α striatal expression, upsurged the expression of ULK1, beclin1, and LC3II/I, reduced Bax/Bcl2 ratio, and alleviated rotenone-induced histopathological changes in striatum and SN. Our findings also verified the contribution of AMPK activation to the neuroprotective effect of ezetimibe by using the AMPK inhibitor dorsomorphin. Together, this work revealed that ezetimibe exerts a neuroprotective impact in rotenone-induced PD by activating AMPK/SIRT-1/PGC-1α signaling, enhancing autophagy, and attenuating apoptosis. Thus, ezetimibe's activation of AMPK could hold significant therapeutic promise for PD management.


Assuntos
Reposicionamento de Medicamentos , Ezetimiba , Fármacos Neuroprotetores , Doença de Parkinson , Transdução de Sinais , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Ezetimiba/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Rotenona , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
4.
Biomed Pharmacother ; 177: 117026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936197

RESUMO

Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.


Assuntos
Ciclofosfamida , Peptídeo 1 Semelhante ao Glucagon , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Piranos , Transdução de Sinais , Animais , Ciclofosfamida/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Piranos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Antocianinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ratos Wistar , Pirimidinas/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Proteína Forkhead Box O1 , Compostos Heterocíclicos com 2 Anéis
5.
Pharmaceuticals (Basel) ; 17(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38931349

RESUMO

Despite being an effective chemotherapeutic agent, the clinical use of doxorubicin (DOX) is limited by several organ toxicities including hepatic injury. Pentoxifylline (PTX) is a methylxanthine derivative with marked anti-inflammatory and anti-apoptotic features. It is unknown, however, whether PTX can mitigate DOX-evoked hepatotoxicity. This study aims to explore the potential hepatoprotective impact of PTX in DOX-induced hepatic injury and the underlying molecular mechanisms. Histopathology, immunohistochemistry, and ELISA were used to examine liver tissues. The current findings revealed that PTX administration to DOX-intoxicated rats mitigated the pathological manifestations of hepatic injury, reduced microscopical damage scores, and improved serum ALT and AST markers, revealing restored hepatic cellular integrity. These favorable effects were attributed to PTX's ability to mitigate inflammation by reducing hepatic IL-1ß and TNF-α levels and suppressing the pro-inflammatory HMGB1/TLR4/NF-κB axis. Moreover, PTX curtailed the hepatic apoptotic abnormalities by suppressing caspase 3 activity and lowering the Bax/Bcl-2 ratio. In tandem, PTX improved the defective autophagy events by lowering hepatic SQSTM-1/p62 accumulation and enhancing the AMPK/mTOR pathway, favoring autophagy and hepatic cell preservation. Together, for the first time, our findings demonstrate the ameliorative effect of PTX against DOX-evoked hepatotoxicity by dampening the hepatic HMGB1/TLR4/NF-κB pro-inflammatory axis and augmenting hepatic AMPK/mTOR-driven autophagy. Thus, PTX could be utilized as an adjunct agent with DOX regimens to mitigate DOX-induced hepatic injury.

6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259443

RESUMO

Magnesium sulfate has demonstrated marked neuroprotection in eclampsia, hypoxia, stroke, and post-traumatic brain injury rodent models. However, its potential impact against chronic-restraint-stress (CRS)-induced depression-like neuropathology and associated alterations in endoplasmic reticulum (ER) stress have not been adequately examined. The present study aimed to investigate the neuroprotective potential of magnesium sulfate in a rat model of CRS-triggered depression-like behavioral disturbance and the underlying molecular mechanisms. Herein, CRS was induced by placing rats into restraining tubes for 6 h/day for 21 days and the animals were intraperitoneally injected with magnesium sulfate (100 mg/kg/day) during the study period. After stress cessation, the depression-like behavior was examined by the open-field test, sucrose preference test, and forced swimming test. The present data demonstrated that CRS triggered typical depression-like behavioral changes which were confirmed by the Z-normalization scores. Mechanistically, serum circulating corticosterone levels spiked, and the hippocampi of CRS-exposed animals demonstrated a significant decline in serotonin, norepinephrine, and dopamine neurotransmitters. At the molecular level, the hippocampal pro-inflammatory TNF-alpha and IL-1ß cytokines and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-HG) increased in stressed animals. In tandem, enhancement of hippocampal ER stress was evidenced by the activation of iNOS/PERK/GRP78/CHOP axis seen by increased protein expression of iNOS, PERK, GRP78, and CHOP signal proteins in the hippocampi of stressed rats. Interestingly, magnesium sulfate administration attenuated the depression-like behavioral outcomes and the histopathological changes in the brain hippocampi. These favorable actions were driven by magnesium sulfate's counteraction of corticosterone spike, and hippocampal neurotransmitter decline, alongside the attenuation of neuroinflammation, pro-oxidation, and ER stress. In conclusion, the current results suggest the promising neuroprotective/antidepressant actions of magnesium sulfate in CRS by dampening inflammation, ER stress, and the associated PERK/GRP78/CHOP pathway.

7.
Biomedicines ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002000

RESUMO

Cognitive decline and Alzheimer-like neuropathology are common manifestations of cadmium toxicity. Thanks to its antioxidant/anti-apoptotic features, dapagliflozin has demonstrated promising neuroprotective actions. However, its effect on cadmium-induced neurotoxicity is lacking. The present work aimed to examine whether dapagliflozin could protect rats from cadmium-evoked cognitive decline. In this study, the behavioral disturbances and hippocampal biomolecular alterations were studied after receiving dapagliflozin. Herein, cadmium-induced memory/learning decline was rescued in the Morris water maze, novel object recognition task, and Y-shaped maze by dapagliflozin. Meanwhile, the hippocampal histopathological abnormalities were mitigated. The molecular mechanisms revealed that dapagliflozin lowered hippocampal expression of p-tau and Aß42 neurotoxic proteins while augmenting acetylcholine. The cognitive enhancement was triggered by hippocampal autophagy stimulation, as indicated by decreased SQSTM-1/p62 and Beclin 1 upregulation. Meanwhile, a decrease in p-mTOR/total mTOR and an increase in p-AMPK/total AMPK ratio were observed in response to dapagliflozin, reflecting AMPK/mTOR cascade stimulation. Dapagliflozin, on the other hand, dampened the pro-apoptotic processes in the hippocampus by downregulating Bax, upregulating Bcl-2, and inactivating GSK-3ß. The hippocampal oxidative insult was mitigated by dapagliflozin as seen by lipid peroxide lowering, antioxidants augmentation, and SIRT1/Nrf2/HO-1 pathway activation. In conclusion, dapagliflozin's promising neuroprotection was triggered by its pro-autophagic, anti-apoptotic, and antioxidant properties.

8.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630980

RESUMO

Cadmium is an environmental contaminant associated with marked neurotoxicity and cognitive impairment. Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated promising neuroprotection against cerebral ischemia and diabetic dementia. However, there has been no study of its effect on cadmium-induced cognitive deficits. In the present work, linagliptin's prospective neuroprotective effects against cadmium-evoked cognitive decline were examined in vivo in rats. The molecular pathways related to oxidative stress, apoptosis, and autophagy were investigated. Histology, immunohistochemistry, ELISA, and biochemical assays were performed on brain hippocampi after receiving linagliptin (5 mg/kg/day). The current findings revealed that cadmium-induced learning and memory impairment were improved by linagliptin as seen in the Morris water maze, Y-maze, and novel object recognition test. Moreover, linagliptin lowered hippocampal neurodegeneration as seen in histopathology. At the molecular level, linagliptin curtailed hippocampal DPP-4 and augmented GLP-1 levels, triggering dampening of the hippocampal neurotoxic signals Aß42 and p-tau in rats. Meanwhile, it enhanced hippocampal acetylcholine and GABA and diminished the glutamate spike. The behavioral recovery was associated with dampening of the hippocampal pro-oxidant response alongside SIRT1/Nrf2/HO-1 axis stimulation. Meanwhile, linagliptin counteracted hippocampal apoptosis markers and inhibited the pro-apoptotic kinase GSK-3ß. In tandem, linagliptin activated hippocampal autophagy by lowering SQSTM-1/p62 accumulation, upregulating Beclin 1, and stimulating AMPK/mTOR pathway. In conclusion, linagliptin's antioxidant, antiapoptotic, and pro-autophagic properties advocated its promising neuroprotective impact. Thus, linagliptin may serve as a management approach against cadmium-induced cognitive deficits.

9.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37111290

RESUMO

Rebamipide is a quinolone derivative that has been commonly used for the treatment of gastric and duodenal ulcers. However, the molecular mechanisms of rebamipide against acetic acid-evoked colitis have not been adequately examined. Hence, the current study aimed to investigate the ameliorative effect of rebamipide in a rat model of acetic acid-evoked ulcerative colitis and the linked mechanisms pertaining to SIRT1/FoxO3a/Nrf2 and PI3K/AKT pathways. Herein, colitis was induced by the intrarectal administration of 3% acetic acid solution in saline (v/v) while rebamipide was administered by oral gavage (100 mg/kg/day) for seven days before the colonic insult. The colonic injury was examined by macroscopical and microscopical examination. The current findings demonstrated that rebamipide significantly improved the colonic injury by lowering the colonic disease activity index and macroscopic mucosal injury score. Moreover, it mitigated the histopathological aberrations and microscopical damage score. The favorable outcomes of rebamipide were driven by combating inflammation evidenced by dampening the colonic expression of NF-κBp65 and the pro-inflammatory markers CRP, TNF-α, and IL-6. In the same context, rebamipide curtailed the colonic pro-inflammatory PI3K/AKT pathway as seen by downregulating the immunostaining of PI3K and p-AKT(Ser473) signals. In tandem, rebamipide combated the colonic pro-oxidant events and augmented the antioxidant milieu by significantly diminishing the colonic TBARS and replenishing GSH, SOD, GST, GPx, and CAT. In the same regard, rebamipide stimulated the colonic upstream SIRT1/FoxO3a/Nrf2 axis by upregulating the expression of SIRT1, FoxO3a, and Nrf2, alongside downregulating Keap-1 gene expression. These antioxidant actions were accompanied by upregulation of the protein expression of the cytoprotective signal PPAR-γ in the colons of rats. In conclusion, the present findings suggest that the promising ameliorative features of rebamipide against experimental colitis were driven by combating the colonic inflammatory and oxidative responses. In perspective, augmentation of colonic SIRT1/FoxO3a/Nrf2 and inhibition of PI3K/AKT pathways were engaged in the observed favorable outcomes.

10.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375795

RESUMO

Meloxicam has shown significant neuroprotection in experimental models of stroke, Alzheimer's disease, and Parkinson's disease. However, the potential of meloxicam to treat depression-like neuropathology in a chronic restraint stress (CRS) model and the associated molecular changes has been insufficiently explored. The current work aimed to explore the potential neuroprotective actions of meloxicam against CRS-evoked depression in rats. In the current experiments, animals received meloxicam (10 mg/kg/day; i.p.) for 21 days, and CRS was instigated by restraining the animals for 6 h/day during the same period. The sucrose preference test and the forced swimming test were used to explore the depression-linked anhedonia/despair, whereas the open-field test examined the animals' locomotor activity. The current findings revealed that CRS elicited typical depression behavioral anomalies in the animals, including anhedonia, despair, and diminished locomotor activity; these findings were reinforced with Z-normalization scores. These observations were corroborated by brain histopathological changes and increased damage scores. In CRS-exposed animals, serum corticosterone spiked, and the hippocampi revealed decreased monoamine neurotransmitter levels (norepinephrine, serotonin, and dopamine). Mechanistically, neuroinflammation was evident in stressed animals, as shown by elevated hippocampal TNF-α and IL-1ß cytokines. Moreover, the hippocampal COX-2/PGE2 axis was activated in the rats, confirming the escalation of neuroinflammatory events. In tandem, the pro-oxidant milieu was augmented, as seen by increased hippocampal 8-hydroxy-2'-deoxyguanosine alongside increased protein expression of the pro-oxidants NOX1 and NOX4 in the hippocampi of stressed animals. In addition, the antioxidant/cytoprotective Nrf2/HO-1 cascade was dampened, as evidenced by the lowered hippocampal protein expression of Nrf2 and HO-1 signals. Interestingly, meloxicam administration mitigated depression manifestations and brain histopathological anomalies in the rats. These beneficial effects were elicited by meloxicam's ability to counteract the corticosterone spike and hippocampal neurotransmitter decrease while also inhibiting COX-2/NOX1/NOX4 axis and stimulating Nrf2/HO-1 antioxidant pathway. Together, the present findings prove the neuroprotective/antidepressant actions of meloxicam in CRS-induced depression by ameliorating hippocampal neuroinflammation and pro-oxidant changes, likely by modulating COX-2/NOX1/NOX4/Nrf2 axis.

11.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765022

RESUMO

Cadmium is an environmental toxicant that instigates cognitive deficits with excessive glutamate excitatory neuroactivity in the brain. Topiramate, a glutamate receptor antagonist, has displayed favorable neuroprotection against epilepsy, cerebral ischemia, and Huntington's disease; however, its effect on cadmium neurotoxicity remains to be investigated. In this study, topiramate was tested for its potential to combat the cognitive deficits induced by cadmium in rats with an emphasis on hippocampal oxidative insult, apoptosis, and autophagy. After topiramate intake (50 mg/kg/day; p.o.) for 8 weeks, behavioral disturbances and molecular changes in the hippocampal area were explored. Herein, Morris water maze, Y-maze, and novel object recognition test revealed that topiramate rescued cadmium-induced memory/learning deficits. Moreover, topiramate significantly lowered hippocampal histopathological damage scores. Mechanistically, topiramate significantly replenished hippocampal GLP-1 and dampened Aß42 and p-tau neurotoxic cues. Notably, it significantly diminished hippocampal glutamate content and enhanced acetylcholine and GABA neurotransmitters. The behavioral recovery was prompted by hippocampal suppression of the pro-oxidant events with notable activation of SIRT1/Nrf2/HO-1 axis. Moreover, topiramate inactivated GSK-3ß and dampened the hippocampal apoptotic changes. In tandem, stimulation of hippocampal pro-autophagy events, including Beclin 1 upregulation, was triggered by topiramate that also activated AMPK/mTOR pathway. Together, the pro-autophagic, antioxidant, and anti-apoptotic features of topiramate contributed to its neuroprotective properties in rats intoxicated with cadmium. Therefore, it may be useful to mitigate cadmium-induced cognitive deficits.

12.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895841

RESUMO

Alzheimer's disease (AD) is the most common form of neurodegenerative disorders worldwide. Its pathologic features include massive neuroinflammation with abnormal deposition of ß-amyloid peptide in the cerebral tissues leading to degeneration of the brain neurons. Adverse effects associated with the traditional drugs used for the treatment of this pathological condition have directed the research efforts towards searching for alternative effective agents with minimal adverse effects. The aim of this study was to elucidate the potential ameliorative effects of dapagliflozin and/or hesperidin on Alzheimer's disease (AD) induced by lipopolysaccharide (LPS) injection in rats. In a rodent model of AD, the effect of dapagliflozin with or without hesperidin on the biochemical parameters and the behavioral tests as well as the histopathological parameters was determined. Each of dapagliflozin and hesperidin restored the behavioral tests to the reference values, augmented the antioxidant defense mechanisms, ameliorated the neuronal inflammatory responses, combatted the changes in Toll-like receptor-4 (TLR-4)/High-mobility group box 1 (HMGB1) protein signaling and receptors of advanced glycation end products (RAGE) levels, and restored the balance between the apoptotic signals and autophagy in the hippocampal tissues. Additionally, both agents exhibited an outstanding ability to combat LPS-induced perturbations in the histopathological and electron microscopic image of the brain tissues. These favorable effects were significantly encountered in the group treated with dapagliflozin/hesperidin combination when compared versus animals treated with either dapagliflozin or hesperidin. In conclusion, inhibition of the hippocampal HMGB1/TLR4/RAGE signaling, the pro-inflammatory axis, and apoptosis alongside augmentation of the antioxidant defenses and autophagy can be regarded as beneficial effects by which dapagliflozin/hesperidin combination may combat LPS-triggered AD.

13.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513918

RESUMO

Cadmium (Cd) is a widespread environmental pollutant that triggers testicular dysfunction. Dapagliflozin is a selective sodium-glucose co-transporter-2 inhibitor with notable antioxidant and anti-apoptotic features. It has shown marked cardio-, reno-, hepato-, and neuroprotective effects. Yet, its effect on Cd-evoked testicular impairment has not been examined. Hence, the goal of the current study was to investigate the potential positive effect of dapagliflozin against Cd-induced testicular dysfunction in rats, with an emphasis on autophagy, apoptosis, and oxidative insult. Dapagliflozin (1 mg/kg/day) was given by oral gavage, and testicular dysfunction, impaired spermatogenesis, and biomolecular events were studied via immunohistochemistry, histopathology, and ELISA. The current findings demonstrated that dapagliflozin improved relative testicular weight, serum testosterone, and sperm count/motility and reduced sperm abnormalities, signifying mitigation of testicular impairment and spermatogenesis disruption. Moreover, dapagliflozin attenuated Cd-induced histological abnormalities and preserved testicular structure. The testicular function recovery was prompted by stimulating the cytoprotective SIRT1/Nrf2/HO-1 axis, lowering the testicular oxidative changes, and augmenting cellular antioxidants. As regards apoptosis, dapagliflozin counteracted the apoptotic machinery by downregulating the pro-apoptotic signals together with Bcl-2 upregulation. Meanwhile, dapagliflozin reactivated the impaired autophagy, as seen by a lowered accumulation of SQSTM-1/p62 and Beclin 1 upregulation. In the same context, the testicular AMPK/mTOR pathway was stimulated as evidenced by the increased p-AMPK (Ser487)/total AMPK ratio alongside the lowered p-mTOR (Ser2448)/total mTOR ratio. Together, the favorable mitigation of Cd-induced testicular impairment/disrupted spermatogenesis was driven by the antioxidant, anti-apoptotic, and pro-autophagic actions of dapagliflozin. Thus, it could serve as a tool for the management of Cd-evoked testicular dysfunction.

14.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422532

RESUMO

Topiramate, a promising drug classically used for the management of neurological disorders including epilepsy and migraine, has demonstrated marked anti-inflammatory and anti-apoptotic actions in murine models of cardiac post-infarction inflammation, wound healing, and gastric/intestinal injury. However, its potential impact on cadmium-induced testicular injury remains to be elucidated. Herein, the present study aimed to explore the effect of topiramate against cadmium-invoked testicular impairment with emphasis on the molecular mechanisms linked to inflammation, apoptosis, and autophagy. Herein, administration of topiramate (50 mg/kg/day, by gavage) continued for 60 days and the testes were examined by histology, immunohistochemistry, and biochemical assays. The present data demonstrated that serum testosterone, sperm count/abnormalities, relative testicular weight, and histopathological aberrations were improved by topiramate administration to cadmium-intoxicated rats. The rescue of testicular dysfunction was driven by multi-pronged mechanisms including suppression of NLRP3/caspase-1/IL-1ß cascade, which was evidenced by dampened caspase-1 activity, lowered IL-1ß/IL-18 production, and decreased nuclear levels of activated NF-κBp65. Moreover, curbing testicular apoptosis was seen by lowered Bax expression, decreased caspase-3 activity, and upregulation of Bcl-2. In tandem, testicular autophagy was activated as seen by diminished p62 SQSTM1 accumulation alongside Beclin-1 upregulation. Autophagy activation was associated with AMPK/mTOR pathway stimulation demonstrated by decreased mTOR (Ser2448) phosphorylation and increased AMPK (Ser487) phosphorylation. In conclusion, combating inflammation/apoptosis and enhancing autophagic events by topiramate were engaged in ameliorating cadmium-induced testicular impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA