Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Res ; 197: 111148, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33878318

RESUMO

Industrial and agricultural processes have led to the prevalence of cadmium in the ecosystem. A successive build-up of cadmium in food and drinking water can result in inadvertent consumption of hazardous concentrations. Such environmental contamination of cadmium can pose a substantial threat to human and animal life. In humans, it is known to cause hypertension, cardiovascular diseases, DNA lesions, inhibition of DNA repair protein or disturb the functioning of lung, liver, prostate and kidney. The development of a reliable method for Cd (II) ions detection would reduce the exposure and complement existing conventional methods. In this study, a DNA based electrochemical method is employed for the detection of Cd (II) ions using ethyl green (EG) and multi-walled carbon nanotube (MWCNT). Glassy carbon electrode (GCE)/MWCNT forms the working electrode for differential pulse voltammetry (DPV) analysis for the detection of Cd (II) ions. The dsDNA is immobilized onto the working electrode. The indicator dye EG, preferably binds to ssDNA and its reduction peak current is noticeably less in the presence of dsDNA. The Cd (II) ions after interacting with dsDNA, unwinds the dsDNA to ssDNA, upon which the EG molecules bind to ssDNAs, giving a higher reduction peak current. The difference in the reduction peak currents in the presence and absence of Cd (II) ions is proportional to its concentration. The linear detection range achieved in this method is 2 nM-10.0 nM with a sensitivity of around 5 nA nM-1 and the limit of detection is 2 nM, which is less than the permissible limit of WHO for human exposure. This study considerably broadens the possible application of multi-walled carbon nanotube modified electrodes as biosensors and holds prospects for the detection of other heavy metals in environmental samples.


Assuntos
Cádmio , Nanotubos de Carbono , Animais , Ecossistema , Eletrodos , Humanos , Limite de Detecção , Água
2.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451066

RESUMO

We show that an SnO2-based water-gate thin film transistor (WGTFT) biosensor responds to a waterborne analyte, the spike protein of the SARS-CoV-2 virus, by a parallel potentiometric and capacitive mechanism. We draw our conclusion from an analysis of transistor output characteristics, which avoids the known ambiguities of the common analysis based on transfer characteristics. Our findings contrast with reports on organic WGTFT biosensors claiming a purely capacitive response due to screening effects in high ionic strength electrolytes, but are consistent with prior work that clearly shows a potentiometric response even in strong electrolytes. We provide a detailed critique of prior WGTFT analysis and screening reasoning. Empirically, both potentiometric and capacitive responses can be modelled quantitatively by a Langmuir‒Freundlich (LF) law, which is mathematically equivalent to the Hill equation that is frequently used for biosensor response characteristics. However, potentiometric and capacitive model parameters disagree. Instead, the potentiometric response follows the Nikolsky-Eisenman law, treating the analyte 'RBD spike protein' as an ion carrying two elementary charges. These insights are uniquely possible thanks to the parallel presence of two response mechanisms, as well as their reliable delineation, as presented here.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Concentração Osmolar , SARS-CoV-2 , Água
3.
Molecules ; 25(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947738

RESUMO

This paper introduces the synthesis of well-defined 2-(tert-butylamino)ethyl methacrylate-b-poly(ethylene glycol) methyl ether methacrylate diblock copolymer, which has been grafted onto mesoporous silica nanoparticles (PTBAEMA-b-PEGMEMA-MSNs) via atom transfer radical polymerization (ATRP). The ATRP initiators were first attached to the MSN surfaces, followed by the ATRP of 2-(tert-butylamino)ethyl methacrylate (PTBAEMA). CuBr2/bipy and ascorbic acid were employed as the catalyst and reducing agent, respectively, to grow a second polymer, poly(ethylene glycol) methyl ether methacrylate (PEGMEMA). The surface structures of these fabricated nanomaterials were then analyzed using Fourier Transform Infrared (FTIR) spectroscopy. The results of Thermogravimetric Analysis (TGA) show that ATRP could provide a high surface grafting density for polymers. Dynamic Light Scattering (DLS) was conducted to investigate the pH-responsive behavior of the diblock copolymer chains on the nanoparticle surface. In addition, multifunctional pH-sensitive PTBAEMA-b-PEGMEMA-MSNs were loaded with doxycycline (Doxy) to study their capacities and long-circulation time.


Assuntos
Doxiciclina/química , Portadores de Fármacos , Metacrilatos/química , Nanopartículas/química , Polietilenoglicóis/química , Dióxido de Silício/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Polimerização
4.
Langmuir ; 33(3): 706-713, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28042924

RESUMO

Following controlled photodeprotection of a 2-nitrophenylpropyloxycarbonyl-protected (aminopropyl)triethoxysilane (NPPOC-APTES) film and subsequent derivatization with a bromoester-based initiator, poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC) brushes with various grafting densities were grown from planar silicon substrates using atom transfer radical polymerization (ATRP). The grafting density correlated closely with the extent of deprotection of the NPPOC-APTES. The coefficient of friction for such PMPC brushes was measured by friction force microscopy in water and found to be inversely proportional to the grafting density due to the osmotic pressure that resists deformation. Deprotection of NPPOC-APTES via near-field photolithography using a range of writing rates enabled the fabrication of neighboring nanoscopic polymeric structures with dimensions ranging from 100 to 1000 nm. Slow writing rates enable complete deprotection to occur; hence, polymer brushes are formed with comparable thicknesses to macroscopic brushes grown under the same conditions. However, the extent of deprotection is reduced at higher writing rates, resulting in the concomitant reduction of the brush thickness. The coefficient of friction for such polymer brushes varied smoothly with brush height, with lower coefficients being obtained at slower writing rate (increasing initiator density) because the solvated brush layer confers greater lubricity. However, when ultrasharp probes were used for nanotribological measurements, the coefficient of friction increased with brush thickness. Under such conditions, the radius of curvature of the tip is comparable to the mean spacing between brush chains, allowing the probe to penetrate the brush layer leading to a relatively large contact area.

5.
Soft Matter ; 13(10): 2075-2084, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28217790

RESUMO

The nanomechanical properties of zwitterionic poly(cysteine methacrylate) (PCysMA) brushes grown from planar surfaces by atom transfer radical polymerisation have been characterised by friction force microscopy (FFM). FFM provides quantitative insights into polymer structure-property relationships and in particular illuminates the dependence of brush swelling on chain packing in nanostructured materials. In ethanol, which is a poor solvent for PCysMA, a linear friction-load relationship is observed, indicating that energy dissipation occurs primarily through ploughing. In contrast, in a good solvent for PCysMA such as water, a non-linear friction-load relationship is observed that can be fitted by Derjaguin-Muller-Toporov (DMT) mechanics, suggesting that the relatively small modulus of the swollen polymer leads to a large contact area and consequently a significant shear contribution to energy dissipation. The brush grafting density was varied by using UV photolysis of C-Br bonds at 244 nm to dehalogenate the surface in a controlled fashion. The surface shear strength increases initially as the brush grafting density is reduced, but then decreases for UV doses greater than 0.5 J cm-2, reaching a limiting value when the brush thickness is ca. 50% that of a brush monolayer. Below this critical grafting density, a collapsed brush layer is obtained. For nm-scale gradient brush structures formed via interferometric lithography, the mean width increases as the period is increased, and the lateral mobility of brushes in these regions is reduced, leading to an increase in brush height as the grafted chains become progressively more extended. For a width of 260 nm, the mean brush height in water and ethanol is close to the thickness of a dense unpatterned brush monolayer synthesised under identical conditions. Both the surface shear stress measured for PCysMA brushes under water and the coefficient of friction measured in ethanol are closely correlated to the feature height, and hence to the chain conformation.

6.
Langmuir ; 32(20): 5048-57, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27133955

RESUMO

A quantitative investigation of the responses of surface-grown biocompatible brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) to different types of salt has been carried out using ellipsometry, quartz crystal microbalance (QCM) measurements, and friction force microscopy. Both cations and anions of varying valency over a wide range of concentrations were examined. Ellipsometry shows that the height of the brushes is largely independent of the ionic strength, confirming that the degree of swelling of the polymer is independent of the ionic character of the medium. In contrast, QCM measurements reveal significant changes in mass and dissipation to the PMPC brush layer, suggesting that ions bind to phosphorylcholine (PC) groups in PMPC molecules, which results in changes in the stiffness of the brush layer, and the binding affinity varies with salt type. Nanotribological measurements made using friction force microscopy show that the coefficient of friction decreases with increasing ionic strength for a variety of salts, supporting the conclusion drawn from QCM measurements. It is proposed that the binding of ions to the PMPC molecules does not change their hydration state, and hence the height of the surface-grown polymeric brushes. However, the balance of the intra- and intermolecular interactions is strongly dependent upon the ionic character of the medium between the hydrated chains, modulating the interactions between the zwitterionic PC pendant groups and, consequently, the stiffness of the PMPC molecules in the brush layer.

7.
Langmuir ; 31(12): 3668-77, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25746444

RESUMO

A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 µm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates.


Assuntos
Membrana Celular/química , Cisteína/análogos & derivados , Bicamadas Lipídicas/química , Polímeros/química , Ácidos Polimetacrílicos/química , Cisteína/química , Modelos Moleculares , Conformação Molecular , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Polimerização , Propriedades de Superfície
8.
J Am Chem Soc ; 136(26): 9404-13, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24884533

RESUMO

A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH.


Assuntos
Cisteína/química , Metacrilatos/química , Incrustação Biológica , Adesão Celular , Técnicas de Química Sintética , Proteínas de Fluorescência Verde/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Metacrilatos/síntese química , Microscopia de Força Atômica , Nanoestruturas/química , Fotólise , Silício , Propriedades de Superfície , Raios Ultravioleta
9.
Langmuir ; 30(5): 1391-400, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24417283

RESUMO

Surface-initiated atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) produced pH-responsive secondary amine-functionalized polymer brushes with dry thicknesses ranging from 4 to 28 nm, as determined by ellipsometry. At low pH, linear PTBAEMA brushes became protonated and highly swollen; brush collapse occurred when the solution pH was increased to ca. 7.7 due to deprotonation. PTBAEMA brushes were subsequently cross-linked using tolylene-2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TGI) in either THF (a good solvent for PTBAEMA) or n-hexane (a poor solvent). The intensity of the C-C-O component (286.5 eV) in the C1s X-ray photoelectron spectrum increased after reaction with PPG-TDI, suggesting that cross-linking was successful in both solvents. Ellipsometry studies indicated that the pH-responsive behavior of these cross-linked brushes is dictated by the spatial location of the PPG-TDI cross-linker. Thus, uniformly cross-linked brushes prepared in THF became appreciably less swollen at a given (low) pH than surface-cross-linked brushes prepared in n-hexane. Micro- and nanopatterned PTBAEMA brushes were prepared via UV irradiation and interference lithography, respectively, and characterized by atomic force microscopy. The change in brush height was determined as a function of pH, and these AFM observations correlated closely with the ellipsometric studies.


Assuntos
Reagentes de Ligações Cruzadas/química , Metacrilatos/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Modelos Biológicos , Propriedades de Superfície
10.
RSC Adv ; 14(13): 8819-8828, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495996

RESUMO

This study delves into the development, characterization, and application of modified mesoporous silica nanoparticles (MSNs) for targeted drug delivery in cancer therapy. MSNs were functionalized with poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) and poly(glycidyl methacrylate) (PGMA), and further modified with cross-linkers DAE and Ornithine. Characterization using FT-IR, SEM, TEM, DLS, and XPS confirmed the successful surface modifications, revealing particle sizes primarily within the 63-94 nm range. The MSNs demonstrated a pH-responsive behavior, crucial for smart drug delivery. Loading and release studies using Doxorubicin (DOX) showed a controlled release, with an 8 µg mg-1 loading capacity. Cytotoxicity assays on Caco2 colon cancer cells revealed that unloaded nano-systems, at concentrations above 45 µM, resulted in approximately 60% cell death, indicating inherent anti-cancer properties. However, variations in cytotoxic effects were observed in drug-loaded MSNs, with some modifications showing reduced anti-cancer activity. These findings highlight the potential of MSNs in drug delivery and cancer treatment, emphasizing the importance of nanoparticle design in therapeutic efficacy.

11.
Talanta ; 279: 126586, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079434

RESUMO

In this study, we present a convenient approach utilizing gold nanostructures coated cellulose membrane for the quantification of uric acid in an aqueous solution. The synthesis of system was achieved by functionalizing cellulose membrane with poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) and cross-linked with ethylene glycol dimethacrylate (EGDMA). FT-IR and XPS confirm the formation of PMETAC and PMETAC/EGDMA on the cellulose. The fabricated substrates were exposed to tetrachloroaurate solution, then reduced by NaBH4. We have systematically investigated the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) in various pH conditions, absent uric acid, using the fabricated substrates. The colorimetric response-observed through UV-Vis spectroscopy-revealed significant shifts in absorbance at 660 nm, correlating with uric acid concentrations across a range of pH levels. The films exhibited a pronounced color change from green to light yellow in basic to neutral environments and from yellow to dark green under more acidic conditions, demonstrating their potential for high-sensitivity uric acid detection. The assessment of the catalytic films' reusability and stability revealed insights into their enduring performance, identifying opportunities for enhancing material design and functionality for extended applications. This study not only underscores the films' versatile detection capabilities but also emphasizes the importance of pH in tuning the assay's sensitivity and specificity.

12.
Heliyon ; 9(12): e23180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144353

RESUMO

The removal of dyes from wastewater that are released during industrial processes has become a significant concern in the environmental science in recent years. To tackle this issue, researchers are exploring the use of nanomaterials for designing new adsorbents. Another promising approach is to grow polymer brushes with high density functional groups via surface-initiated atom transfer radical polymerization (SI-ATRP), which can significantly enhance their ability to absorb dyes. The presence of carboxylic acid groups on the adsorbent material significantly contributes to its efficacy in dye removal by enhancing adsorption capacity, enabling selective adsorption, pH-dependent behavior, chelation, or complexation, and providing stability for repeated usage. In this work, a nanomaterial of carboxylic functionalized poly (methacrylic acid 2-(tert-butylamino)ethyl ester)-coated mesoporous silica nanoparticles (MSNPs-PMATBAE-COOH) was synthesized by the growth of PTBAEMA via surface-initiated atom-transfer radical polymerization, then reacted with succinic anhydride reaction. The chemical structure of MSNPs-PMATBAE-COOH was confirmed using multiple methods, including FT-IR and DLS, and the core-brush morphology was observed clearly using TEM. MSNPs-PMATBAE-COOH were subsequently employed to adsorb hazardous dyes efficiently. The anionic polymer brushes enabled the adsorption of methylene blue (MB) and tetraethylrhodamine (TER) at optimum pH value of 3. The results also indicated that MSNPs-PMATBAE-COOH possessed significant adsorption capacity (263.4 and 212.9 mg g-1 for MB and TER, respectively) and fast adsorption rate (within 15 min), which can be explained by the abundance of adsorptive polymer brushes and the small size of the nanoparticles. Overall, the findings indicate that MSNPs-PMATBAE-COOH is a highly effective adsorbent material for eliminating dye pollutants from wastewater.

13.
IET Nanobiotechnol ; 17(1): 32-39, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36537882

RESUMO

The human cytomegalovirus (HCMV) is an asymptomatic common virus that is typically harmless, but in some cases, it can be life threatening. Thus, there is an urgent need to develop novel diagnostic methods and strengthen the efforts to combat this virus. A microcantilever-based biosensor functionalised with the UL83-antibody of HCMV (UL83-HCMV antibody) has been developed to detect the UL83-antigen of HCMV (UL83-HCMV antigen) at different concentrations ranging from 0.3 to 300 ng/ml. The response of the biosensor to the presence of UL83-HCMV antigen was measured through the shift in resonance frequency before and after antigen-antibody binding. The system shows a low detection limit of 84 pg/ml, which is comparable to traditional sensors, and a detection time of less than 15 min was achieved. The selectivity of the sensor was demonstrated using three different proteins with and without the UL83-HCMV antigen. The biosensor shows high selectivity for the UL83-HCMV antigen. Mass loading by the UL83-HCMV antigen was roughly estimated with a sensitivity of ∼30 fg/Hz. This technique is crucial for the fabrication of portable and low-cost biosensors that can be used in real-time monitoring and enables early medical diagnosis.


Assuntos
Anticorpos , Citomegalovirus , Humanos , Citomegalovirus/fisiologia
14.
Ultrason Sonochem ; 98: 106497, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390783

RESUMO

Contamination of heavy metal (Cd2+ & Pb2+) ions in drinking water is producing major impacts on the environment and public health and is considered one of the greatest dangers to humanity. Membrane technology has been chosen over other processing methods due to its simplicity and high capacity for more effective removal of hazardous heavy metals. In the current study, amine, thiol, and bi-thiol functional groups were used to functionalize mesoporous silica nanoparticles (MSNs) to improve the efficiency of the silica nanoparticle. The morphology of the MSNs as well as the existence of amine and thiol on the surface of MSNs was demonstrated by a variety of characterization techniques, including FTIR, TEM, and SEM examination. The impact of surface-modified MSNs on the morphology, properties, and performance of polysulfone (PS) nanofiltration (NF) membranes was also evaluated. The membrane that incorporated amine with thiol-based MSNs (DiMP-MSNs/PS-NF membrane) had the highest pure water permeability (6.7 LMH bar-1). As a result of the functional groups, the surface-modified MSNs/PS nanofiltration are extremely effective at removing heavy metal ions from aqueous solutions. The surface-modified MSNs/PS nano-filtration membranes exhibit unprecedented Cd2+ and Pb2+ removal rates of approximately 82% and 99%, respectively. This research indicates the possible application of the surface-modified MSNs/PS nanofiltration membrane as a promising platform to remove heavy metal ions from polluted water.

15.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407725

RESUMO

Nanoparticles and nanomaterials have gained a huge amount of attention in the last decade due to their unique and remarkable properties. Metallic nanoparticles like zinc oxide nanoparticles (ZnONPs) have been used very widely as plant nutrients and in wastewater treatment. Here, ZnONPs were synthesized by using onion peel and characterized by various sophisticated instruments like Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopes (FESEM). FTIR confirmed ZnONPs synthesis due to the formation of the band in the region of 400-800 cm-1, while FESEM confirmed the spherical shape of the particles whose size varies in the range of 20-80 nm. FTIR revealed several bands from 1000-1800 cm-1 which indicates the capping by the organic molecules on the ZnONPs, which came from onion peel. It also has carbonyl and hydroxyl groups, due to the organic molecules present in the Allium cepa peel waste. The average hydrodynamic size of ZnONPs was 500 nm as confirmed by DLS. The synthesized ZnONPs were then used as a plant nutrient where their effect was evaluated on the growth of Vigna radiate (mung bean) and Triticum aestivum (wheat seeds). The results revealed that the germination and seedling of mung and wheat seeds with ZnONPs were grown better than the control seed. However, seeds of mung and wheat with ZnONPs at median concentration exposure showed an enhancement in percent germination, root, and shoot length in comparison to control. Thus, the effect of ZnONPs has been proved as a nano-based nutrient source for agricultural purposes.

16.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268855

RESUMO

Two novel complexes, [(C7H10NO2)CdCl3]n(I) and [(C7H9NO2)CuCl2],havebeen synthesized and characterized. Single crystal X-ray diffraction revealed that in compound (I), 2,6-dimethanol pyridinium acts as a monodentate ligand through the O atom of the hydroxyl group. Contrarily, the 2,6-dimethanol pyridine ligand interacts tridentately with the Cu(II) ion via the nitrogen atoms and the two oxygen (O, O') atoms of the two hydroxyl groups. The structure's intermolecular interactions were studied using contact enrichment ratios and Hirshfeld surfaces. Following metal coordination, numerous hydrogen connections between entities and parallel displacement stacking interactions between pyridine rings dictate the crystal packing of both compounds. The aromatic cycles generate layers in the crystal for both substances. Powder XRD measurements confirmed the crystalline sample phase purity. SEM confirmed the surface homogeneity, whereas EDX semi-quantitative analysis corroborated the composition. IR spectroscopy identified vibrational absorption bands, while optical UV-visible absorption spectroscopy investigated optical properties. The thermal stability of the two materials was tested using TG-DTA.

17.
Membranes (Basel) ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34940436

RESUMO

Membranes are an efficient way to treat emulsified heavy metal-based wastewater, but they generally come with a trade-off between permeability and selectivity. In this research, the amine and sulphonic groups on the inner and outer surface of mesoporous silica nanoparticles (MSNs) were first modified by a chemical approach. Then, MSNs with amine and sulphonic groups were utilized as new inorganic nanofiller to fabricate mixed matrix polysulfone (PSU) nanocomposite membranes using the classical phase inversion approach. The resultant nanoparticles and membranes were characterized by their physico-chemical characteristics as well as determination of pure water permeability along with cadmium and zinc ion removal. Embedding nanoparticles resulted in a significant rise in the water permeability as a result of changes in the surface properties and porosity of the membrane. Furthermore, the efficiency of developed membranes to remove cadmium and zinc was significantly improved by more than 90% due to the presence of functional groups on nanoparticles. The functionalized-MSNs/PSU nanocomposite membrane has the potential to be an effective industrial effluent removal membrane.

18.
Polymers (Basel) ; 13(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800258

RESUMO

In this paper, a new pH-responsive nanosystem based on mesoporous silica nanoparticles (MSNs) was developed for cancer therapy. Poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) was grafted on their outer surface and acts as a gatekeeper, followed by subsequent modification of the polymer by cysteine (MSN-PDEAEMA-Cys) and poly(oligo(ethylene glycol) methyl ether methacrylate) (MSN-PDEAEMA-Cys-POEGMEMA). The physicochemical properties of these nanocarriers were characterized using scanning and transmission electron microscopies (SEM and TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS). The synthesized nanoparticles were well-dispersed with a diameter of ca. 200 nm. The obtained XPS results confirm the successful modification of MSN-PDEAEMA with Cys and POEGMEMA by increasing the peak intensity of C-O and C=O groups at 286.5 and 288.5 eV, respectively. An anti-cancer drug, doxorubicin (DOX), was encapsulated into the fabricated nanoplatform. The DOX release amount at physiological pH of 7.4 was limited (10%), while an accumulation drug release of ca. 35% was accomplished after 30 h in acidic media. The MTT cell line was used to assess the cytotoxicity of the unloaded and DOX-loaded fabricated nanoplatforms. Upon loading of DOX on these nanomaterials, they showed significant toxicity to human liver cancer cells. These results suggest that the prepared nano-structured materials showed good biocompatibility as well, and they can serve as nanocarriers for the delivery of anti-cancer drugs.

19.
Polymers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233772

RESUMO

This work presents the synthesis of pH-responsive poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) brushes anchored on hollow mesoporous silica nanoparticles (HMSN-PDEAEMA) via a surface-initiated ARGET ATRP technique. The average size of HMSNs was ca. 340 nm, with a 90 nm mesoporous silica shell. The dry thickness of grafted PDEAEMA brushes was estimated to be ca 30 nm, as estimated by SEM and TEM. The halogen group on the surface of PDEAMA brushes was successfully derivatized with glucosamine, as confirmed by XPS. The effect of pH on the size of the hybrid nanoparticles was investigated by DLS. The size of fabricated nanoparticle decreased from ca. 950 nm in acidic media to ca. 500 nm in basic media due to the deprotonation of tertiary amine in the PDEAEMA. The PDEAEMA modified HMSNs nanocarrier was efficiently loaded with doxorubicin (DOX) with a loading capacity of ca. 64%. DOX was released in a relatively controlled pH-triggered manner from hybrid nanoparticles. The cytotoxicity studies demonstrated that DOX@HMSN-PDEAEMA-Glucosamine showed a strong ability to kill breast cancer cells (MCF-7 and MCF-7/ADR) at low drug concentrations, in comparison to free DOX.

20.
Polymers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375759

RESUMO

Currently, chemotherapy is an important method for the treatment of various cancers. Nevertheless, it has many limitations, such as poor tumour selectivity and multi-drug resistance. It is necessary to improve this treatment method by incorporating a targeted drug delivery system aimed to reduce side effects and drug resistance. The present work aims to develop pH-sensitive nanocarriers containing magnetic mesoporous silica nanoparticles (MMSNs) coated with pH-responsive polymers for tumour-targeted drug delivery via the folate receptor. 2-Diethyl amino ethyl methacrylate (DEAEMA) was successfully grafted on MMSNs via surface initiated ARGET atom transfer radical polymerization (ATRP), with an average particle size of 180 nm. The end groups of poly (2-(diethylamino)ethyl methacrylate) (PDEAEMA) brushes were converted to amines, followed by a covalent bond with folic acid (FA) as a targeting agent. FA conjugated to the nanoparticle surface was confirmed by X-ray photoelectron spectroscopy (XPS). pH-Responsive behavior of PDEAEMA brushes was investigated by Dynamic Light Scattering (DLS). The nanoparticles average diameters ranged from ca. 350 nm in basic media to ca. 650 in acidic solution. Multifunctional pH-sensitive magnetic mesoporous nanoparticles were loaded with an anti-cancer drug (Doxorubicin) to investigate their capacity and long-circulation time. In a cumulative release pattern, doxorubicin (DOX) release from nano-systems was ca. 20% when the particle exposed to acidic media, compared to ca. 5% in basic media. The nano-systems have excellent biocompatibility and are minimally toxic when exposed to MCF-7, and -MCF-7 ADR cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA