Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(30): 8658-61, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26053734

RESUMO

Caged supramolecular systems are promising hosts for guest inclusion, separation, and stabilization. Well-studied examples are mainly metal-coordination-based or covalent architectures. An anion-coordination-based cage that is capable of encapsulating halocarbon guests is reported for the first time. This A4L4-type (A=anion) tetrahedral cage, [(PO4)4L4](12-), assembled from a C3-symmetric tris(bisurea) ligand (L) and phosphate ion (PO4(3-)), readily accommodates a series of quasi-tetrahedral halocarbons, such as the Freon components CFCl3, CF2Cl2, CHFCl2, and C(CH3)F3, and chlorocarbons CH2Cl2, CHCl3, CCl4, C(CH3)Cl3, C(CH3)2Cl2, and C(CH3)3Cl. The guest encapsulation in the solid state is confirmed by crystal structures, while the host-guest interactions in solution were demonstrated by NMR techniques.

2.
J Am Chem Soc ; 130(51): 17502-8, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19053461

RESUMO

The (2)H solid-state NMR spectra of the transition metal complexes Tp*RuD(THT)(2) (1a), Tp*RuD(D(2))(THT) (1b), Tp*RuD(D(2))(2) (1c), Cp*RuD(3)(PPh(3)) (2) and RuD(2)(eta(2)-D(2))(2)(PCy(3))(2) (3) have been measured in a wide temperature range. These compounds were chosen as potential model systems for hydrogen surface species in Ru-nanoparticles. The deuterium quadrupolar coupling constants Q(cc) and asymmetry parameters were extracted by (2)H NMR line-shape analysis. The Q(cc) values of the deuterons bound to the metal vary between 13 kHz and 76 kHz. In addition all spectra show that some of the deuterium is incorporated into carbon positions exhibiting quadrupolar coupling constants in the range of 134 kHz to 192 kHz. The room temperature spectra contain an additional weak very narrow line which was assigned to deuterons exhibiting a high mobility. These deuterons are attributed to crystallographic impurity and partially to D(2) molecules which lost by the complexes. The temperature where their motion is quenched and the types of these motions depend on the chemical structure. We propose to use the values of the quadrupolar coupling constants measured in order to characterize different hydrogen species on the surface of Ru-nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA