Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 161: 105543, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34737044

RESUMO

A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.


Assuntos
Anticorpos Monoclonais , Doença de Parkinson , Sinucleinopatias , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Longevidade , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Sinucleinopatias/terapia , alfa-Sinucleína/metabolismo
2.
Cell Biosci ; 13(1): 142, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542303

RESUMO

BACKGROUND: Standard neuropathologic analysis of Alzheimer's brain relies on traditional fluorescence microscopy, which suffers from limited spatial resolution due to light diffraction. As a result, it fails to reveal intricate details of amyloid plaques. While electron microscopy (EM) offers higher resolution, its extensive sample preparation, involving fixation, dehydration, embedding, and sectioning, can introduce artifacts and distortions in the complex brain tissue. Moreover, EM lacks molecular specificity and has limited field of view and imaging depth. RESULTS: In our study, we employed super-resolution Stimulated Emission Depletion (STED) microscopy in conjunction with the anti-human APP recombinant antibody 1C3 fluorescently labelled with DyLightTM633 (1C3-DyLight633). This combination allowed us to visualize amyloidogenic aggregates in vitro and in brain sections from a 17-month-old 3×Tg-AD mouse with sub-diffraction limited spatial resolution. Remarkably, we achieved a spatial resolution of 29 nm in vitro and 62 nm in brain tissue sections, surpassing the capabilities of conventional confocal microscopy by 5-10 times. Consequently, we could discern individual fibrils within plaques, an achievement previously only possible with EM. CONCLUSIONS: The utilization of STED microscopy represents a groundbreaking advancement in the field, enabling researchers to delve into the characterization of local mechanisms that underlie Amyloid (Aß) deposition into plaques and their subsequent clearance. This unprecedented level of detail is especially crucial for comprehending the etiology of Alzheimer's disease and developing the next generation of anti-amyloid treatments. By facilitating the evaluation of drug candidates and non-pharmacological interventions aiming to reduce amyloid burden, STED microscopy emerges as an indispensable tool for driving scientific progress in Alzheimer's research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA