Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 49(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28446552

RESUMO

Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.


Assuntos
Testes Respiratórios/métodos , Pneumopatias/diagnóstico , Óxido Nítrico/análise , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise , Europa (Continente) , Expiração , Humanos , Pneumopatias/terapia , Sociedades Médicas
2.
J Pharmacol Exp Ther ; 354(3): 426-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159874

RESUMO

The phenotype pantoprazole-(13)C breath test (Ptz-BT) was used to evaluate the extent of phenoconversion of CYP2C19 enzyme activity caused by commonly prescribed proton pump inhibitors (PPI) omeprazole and esomprazole. The Ptz-BT was administered to 26 healthy volunteers and 8 stable cardiovascular patients twice at baseline and after 28 days of PPI therapy to evaluate reproducibility of the Ptz-BT and changes in CYP2C19 enzyme activity (phenoconversion) after PPI therapy. The average intrapatient interday variability in CYP2C19 phenotype (n = 31) determined by Ptz-BT was considerably low (coefficient of variation, 17%). Phenotype conversion resulted in 25 of 26 (96%) nonpoor metabolizer (non-PM) volunteers/patients as measured by the Ptz-BT at baseline and after PPI therapy. The incidence of PM status by phenotype following administration of omeprazole/esomeprazole (known inhibitors of CYP2C19) was 10-fold higher than those who are genetically PMs in the general population, which could have critical clinical implications for personalizing medications primarily metabolized by CYP2C19, such as clopidogrel, PPI, cyclophosphamide, thalidomide, citalopram, clonazepam, diazepam, phenytoin, etc. The Ptz-BT can rapidly (30 minutes) evaluate CYP2C19 phenotype and, more importantly, can identify patients with phenoconversion in CYP2C19 enzyme activity caused by nongenetic factors such as concomitant drugs.


Assuntos
Citocromo P-450 CYP2C19/metabolismo , Esomeprazol/uso terapêutico , Omeprazol/uso terapêutico , Inibidores da Bomba de Prótons/uso terapêutico , 2-Piridinilmetilsulfinilbenzimidazóis/uso terapêutico , Adolescente , Adulto , Interações Medicamentosas/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pantoprazol , Medicina de Precisão/métodos , Reprodutibilidade dos Testes , Adulto Jovem
3.
Chem Soc Rev ; 43(5): 1423-49, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24305596

RESUMO

A new non-invasive and potentially inexpensive frontier in the diagnosis of cancer relies on the detection of volatile organic compounds (VOCs) in exhaled breath samples. Breath can be sampled and analyzed in real-time, leading to fascinating and cost-effective clinical diagnostic procedures. Nevertheless, breath analysis is a very young field of research and faces challenges, mainly because the biochemical mechanisms behind the cancer-related VOCs are largely unknown. In this review, we present a list of 115 validated cancer-related VOCs published in the literature during the past decade, and classify them with respect to their "fat-to-blood" and "blood-to-air" partition coefficients. These partition coefficients provide an estimation of the relative concentrations of VOCs in alveolar breath, in blood and in the fat compartments of the human body. Additionally, we try to clarify controversial issues concerning possible experimental malpractice in the field, and propose ways to translate the basic science results as well as the mechanistic understanding to tools (sensors) that could serve as point-of-care diagnostics of cancer. We end this review with a conclusion and a future perspective.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Pulmonares/diagnóstico , Compostos Orgânicos Voláteis/análise , Técnicas Biossensoriais , Testes Respiratórios , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanoestruturas/química , Compostos Orgânicos Voláteis/classificação , Compostos Orgânicos Voláteis/metabolismo
4.
Angew Chem Int Ed Engl ; 54(38): 11036-48, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235374

RESUMO

This Review presents a concise, but not exhaustive, didactic overview of some of the main concepts and approaches related to "volatolomics"-an emerging frontier for fast, risk-free, and potentially inexpensive diagnostics. It attempts to review the source and characteristics of volatolomics through the so-called volatile organic compounds (VOCs) emanating from cells and their microenvironment. It also reviews the existence of VOCs in several bodily fluids, including the cellular environment, blood, breath, skin, feces, urine, and saliva. Finally, the usefulness of volatolomics for diagnosis from a single bodily fluid, as well as ways to improve these diagnostic aspects by "hybrid" approaches that combine VOC profiles collected from two or more bodily fluids, will be discussed. The perspectives of this approach in developing the field of diagnostics to a new level are highlighted.


Assuntos
Diagnóstico , Líquidos Corporais/química , Humanos , Compostos Orgânicos Voláteis/análise
5.
Anal Chem ; 86(8): 3915-23, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24611620

RESUMO

Selective reagent ionization time-of-flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS (NO(+))) was applied for near real-time monitoring of selected skin-borne constituents which are potential markers of human presence. The experimental protocol involved a group of 10 healthy volunteers enclosed in a body plethysmography chamber mimicking the entrapment environment. A total of 12 preselected omnipresent in human scent volatiles were quantitatively monitored. Among them there were six aldehydes (n-propanal, n-hexanal, n-heptanal, n-octanal, n-nonanal, and 2 methyl 2-propenal), four ketones (acetone, 2-butanone, 3-buten-2-one, and 6-methyl-5-hepten-2-one), one hydrocarbon (2-methyl 2-pentene), and one terpene (DL-limonene). The observed median emission rates ranged from 0.28 to 44.8 nmol × person(-1) × min(-1) (16-1530 fmol × cm(-2) × min(-1)). Within the compounds under study, ketones in general and acetone in particular exhibited the highest abundances. The findings of this study provide invaluable information about formation and evolution of a human-specific chemical fingerprint, which could be used for the early location of entrapped victims during urban search and rescue operations (USaR).


Assuntos
Biomarcadores/análise , Pele/química , Adulto , Aldeídos/análise , Feminino , Humanos , Indicadores e Reagentes , Cetonas/análise , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Óxido Nítrico/química , Pletismografia , Trabalho de Resgate , Compostos Orgânicos Voláteis/análise , Adulto Jovem
6.
Rapid Commun Mass Spectrom ; 28(15): 1683-90, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975248

RESUMO

RATIONALE: The reactions of NO(+) with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO(+) ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS: Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds - dimethyl selenide and dimethyl diselenide. RESULTS: Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M(+) cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO(+) M, formed by ion-molecule association, and [M-H](+) ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)(+) * adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3 , CH4 and/or C2 H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS: The findings of this study are of particular importance for data interpretation in studies of volatile organosulfur and volatile organoselenium compounds employing SRI-TOF-MS in the NO(+) mode.


Assuntos
Biopolímeros/química , Óxidos de Nitrogênio/química , Compostos Organosselênicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos de Enxofre/química , Compostos Orgânicos Voláteis/química , Biopolímeros/análise , Indicadores e Reagentes/química , Óxidos de Nitrogênio/análise , Compostos Organosselênicos/análise , Compostos de Enxofre/análise , Compostos Orgânicos Voláteis/análise
7.
Int J Mass Spectrom ; 363: 23-31, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25844049

RESUMO

Product ion distributions for the reactions of NO+ with 22 aldehydes involved in human physiology have been determined under the prevailing conditions of a selective reagent ionization time of flight mass spectrometry (SRI-TOF-MS) at an E/N in the flow/drift tube reactor of 130 Td. The chosen aldehydes were fourteen alkanals (the C2-C11 n-alkanals, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, and 2-ethyl hexanal), six alkenals (2-propenal, 2-methyl 2-propenal, 2-butenal, 3-methyl 2-butenal, 2-methyl 2-butenal, and 2-undecenal), benzaldehyde, and furfural. The product ion fragmentations patterns were determined for both dry air and humid air (3.5% absolute humidity) used as the matrix buffer/carrier gas in the drift tube of the SRI-TOF-MS instrument. Hydride ion transfer was seen to be a common ionization mechanism in all these aldehydes, thus generating (M-H)+ ions. Small fractions of the adduct ion, NO+M, were also seen for some of the unsaturated alkenals, in particular 2-undecenal, and heterocyclic furfural for which the major reactive channel was non-dissociative charge transfer generating the M+ parent ion. Almost all of the reactions resulted in partial fragmentation of the aldehyde molecules generating hydrocarbon ions; specifically, the alkanal reactions resulted in multiple product ions, whereas, the alkenals reactions produced only two or three product ions, dissociation of the nascent excited product ion occurring preferentially at the 2-position. The findings of this study are of particular importance for data interpretation in studies of aldehydes reactions employing SRI-TOF-MS in the NO+ mode.

8.
BMC Nephrol ; 15: 43, 2014 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-24607025

RESUMO

BACKGROUND: Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment. METHODS: Gas chromatography with mass spectrometric detection coupled with solid-phase microextraction as pre-concentration method. RESULTS: A total of 60 VOCs were reliably identified and quantified in blood and breath of CKD patients. Excluding contaminants, six compounds (isoprene, dimethyl sulfide, methyl propyl sulfide, allyl methyl sulfide, thiophene and benzene) changed their blood and breath levels during the hemodialysis treatment. CONCLUSIONS: Uremic breath and blood patterns were found to be notably affected by the contaminants from the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis. Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic and have negative impact on human body functions. Further studies are required to investigate if VOCs responding to HD treatment could be used as markers for monitoring hemodialysis efficiency.


Assuntos
Testes Respiratórios , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Diálise Renal/efeitos adversos , Uremia/etiologia , Uremia/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
9.
Cancer Cell Int ; 13(1): 72, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23870484

RESUMO

BACKGROUND: Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. METHODS: The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. RESULTS: A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. CONCLUSIONS: The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function.

10.
Analyst ; 138(5): 1405-18, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23323261

RESUMO

The stability of 41 selected breath constituents in three types of polymer sampling bags, Tedlar, Kynar, and Flexfilm, was investigated using solid phase microextraction and gas chromatography mass spectrometry. The tested molecular species belong to different chemical classes (hydrocarbons, ketones, aldehydes, aromatics, sulphurs, esters, terpenes, etc.) and exhibit close-to-breath low ppb levels (3-12 ppb) with the exception of isoprene, acetone and acetonitrile (106 ppb, 760 ppb, 42 ppb respectively). Stability tests comprised the background emission of contaminants, recovery from dry samples, recovery from humid samples (RH 80% at 37 °C), influence of the bag's filling degree, and reusability. Findings yield evidence of the superiority of Tedlar bags over remaining polymers in terms of background emission, species stability (up to 7 days for dry samples), and reusability. Recoveries of species under study suffered from the presence of high amounts of water (losses up to 10%). However, only heavier volatiles, with molecular masses higher than 90, exhibited more pronounced losses (20-40%). The sample size (the degree of bag filling) was found to be one of the most important factors affecting the sample integrity. To sum up, it is recommended to store breath samples in pre-conditioned Tedlar bags up to 6 hours at the maximum possible filling volume. Among the remaining films, Kynar can be considered as an alternative to Tedlar; however, higher losses of compounds should be expected even within the first hours of storage. Due to the high background emission Flexfilm is not suitable for sampling and storage of samples for analyses aiming at volatiles at a low ppb level.


Assuntos
Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Umidade , Limite de Detecção , Polietilenoglicóis/química , Polietilenotereftalatos , Polímeros/química , Embalagem de Produtos , Microextração em Fase Sólida , Manejo de Espécimes , Volatilização
11.
Analyst ; 138(7): 2134-45, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23435188

RESUMO

Gas chromatography with mass spectrometric detection (GC-MS) was used to identify and quantify volatile organic compounds in the blood and breath of healthy individuals. Blood and breath volatiles were pre-concentrated using headspace solid phase micro-extraction (HS-SPME) and needle trap devices (NTDs), respectively. The study involved a group of 28 healthy test subjects and resulted in the quantification of a total of 74 compounds in both types of samples. The concentrations of the species under study varied between 0.01 and 6700 nmol L(-1) in blood and between 0.02 and 2500 ppb in exhaled air. Limits of detection (LOD) ranged from 0.01 to 270 nmol L(-1) for blood compounds and from 0.01 to 0.7 ppb for breath species. Relative standard deviations for both measurement regimes varied from 1.5 to 14%. The predominant chemical classes among the compounds quantified were hydrocarbons (24), ketones (10), terpenes (8), heterocyclic compounds (7) and aromatic compounds (7). Twelve analytes were found to be highly present in both blood and exhaled air (with incidence rates higher than 80%) and for 32 species significant differences (Wilcoxon signed-rank test) between room air and exhaled breath were observed. By comparing blood, room air and breath levels in parallel, a tentative classification of volatiles into endogenous and exogenous compounds can be achieved.


Assuntos
Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/sangue , Adolescente , Adulto , Testes Respiratórios/instrumentação , Feminino , Humanos , Hidrocarbonetos/análise , Cetonas/análise , Masculino , Pessoa de Meia-Idade , Fumar/fisiopatologia , Microextração em Fase Sólida/métodos , Terpenos/análise , Compostos Orgânicos Voláteis/análise
12.
Microbiology (Reading) ; 158(Pt 12): 3044-3053, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23059976

RESUMO

Volatile organic compounds (VOCs) released from or taken up by Streptococcus pneumoniae and Haemophilus influenzae cultures were analysed by means of GC-MS after adsorption of headspace samples on multi-bed sorption tubes. Sampling was performed at different time points during cultivation of bacteria to follow the dynamics of VOC metabolism. VOCs were identified not only by spectral library match but also based on retention times of native standards. As many as 34 volatile metabolites were released from S. pneumoniae and 28 from H. influenzae, comprising alcohols, aldehydes, esters, hydrocarbons, ketones and sulfur-containing compounds. For both species, acetic acid, acetaldehyde, methyl methacrylate, 2,3-butanedione and methanethiol were found in strongly elevated concentrations and 1-butanol and butanal in moderately elevated concentrations. In addition, characteristic volatile biomarkers were detected for both bacterial species and exclusively for S. pneumoniae, also catabolism of aldehydes (3-methylbutanal and hexanal) was found. The results obtained provide important input into the knowledge about volatile bacterial biomarkers, which may become particularly important for detection of pathogens in upper airways by breath-gas analysis in the future.


Assuntos
Haemophilus influenzae/metabolismo , Streptococcus pneumoniae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Fatores de Tempo , Compostos Orgânicos Voláteis/química
13.
BMC Microbiol ; 12: 113, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716902

RESUMO

BACKGROUND: The routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs). RESULTS: Headspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole).Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml]. CONCLUSIONS: The results obtained provide strong evidence that the detection and perhaps even identification of bacteria could be achieved by determination of characteristic volatile metabolites, supporting the clinical use of breath-gas analysis as non-invasive method for early detection of bacterial lung infections.


Assuntos
Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Compostos Orgânicos Voláteis/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Testes Respiratórios , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Pneumopatias/diagnóstico , Pneumopatias/microbiologia , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa/classificação , Staphylococcus aureus/classificação , Adulto Jovem
14.
Analyst ; 137(14): 3278-85, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22662321

RESUMO

Headspace solid phase micro-extraction gas chromatography-mass spectrometry (SPME-GC-MS) analysis was performed over an in-house made filling chamber loaded with brick or concrete, mimicking a potential entrapment scene of building collapse following natural or man-made disasters. Permeation profiles of 22 volatile species, released by human urine samples, were quantitatively monitored over the selected debris materials for a time period of 24 hours (LODs ranged from 0.05-0.8 ppb, R(2) varied from 0.991-0.999 and RSDs 3-9%). Ketones were the most abundant constituents of urine vapor with eleven representatives followed by five aldehydes, two furans, two sulphur-containing compounds, one nitrile and one heterocyclic compound. The majority of the detected compounds were found below 10 ppb, with the exception of some ketones including acetone, 2-butanone and 2-pentanone. The influence of debris materials on the permeation profiles of analytes under study depended on their fundamental physicochemical properties. Less volatile and more soluble compounds in urine (ketones and aldehydes) were found to be present for longer time periods in the surroundings of the urine samples than the more volatile and poorly soluble ones (furans, sulphur-containing compounds). More specifically, ketones exhibited longer residence times in the filling chamber and strongly interacted with the debris materials as their molecular masses were increased; their profiles were found to be significantly modified in the presence of concrete. In general, concrete demonstrated a stronger interaction with urine species than brick, affecting the observed concentrations and residence times of released volatiles in the chamber.


Assuntos
Materiais de Construção , Urinálise/métodos , Adulto , Biomarcadores/química , Biomarcadores/urina , Desastres , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Permeabilidade , Reprodutibilidade dos Testes , Microextração em Fase Sólida , Fatores de Tempo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/urina
15.
Int J Toxicol ; 31(3): 267-75, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22674932

RESUMO

Human blood:air and plasma:air partition coefficients for C(4)-C(8) n-alkanes, isoalkanes, and 1-alkenes were determined using multiple headspace extraction coupled with solid phase microextraction and gas chromatography. Mean blood:air partition coefficients expressed in the form of dimensionless blood-to-air concentration ratio (g/mL(b)/g/mL(a)) were 0.183, 0.416, 1.08, 2.71, and 5.77 for C(4)-C(8) n-alkanes; 0.079, 0.184, 0.473, 1.3, and 3.18 for C(4)-C(8) isoalkanes; and 0.304, 0.589, 1.32, 3.5, and 7.01 for C(4)-C(8) 1-alkenes, respectively (n = 8). The reported partition coefficient values increased exponentially with boiling points, molecular weights, and the carbon atoms in the particle. The solubility of 1-alkenes in blood was higher than in plasma, whereas the blood:air and plasma:air partition coefficients of n-alkanes and isoalkanes did not differ significantly. Consequently, additional interactions of 1-alkenes with whole blood seem to occur. The presented findings are expected to be particularly useful for assessing the uptake, distribution, and elimination of hydrocarbons in human organism.


Assuntos
Alcanos/química , Alcenos/química , Adulto , Ar , Alcanos/sangue , Alcenos/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Microextração em Fase Sólida
16.
Toxicol Mech Methods ; 22(7): 502-11, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22482743

RESUMO

CONTEXT: The scent profile of human urine was investigated as potential source of chemical markers of human presence in collapsed buildings after natural or man-made disasters. OBJECTIVE: The main goals of this study were to build a library of potential biomarkers of human urine to be used for the detection of entrapped victims and to further examine their evolution profile in time. MATERIALS AND METHODS: Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to detect and identify the volatile organic compounds (VOCs) spontaneously released from urine of 20 healthy volunteers. Additionally, the evolution of human urine headspace during four days storage at room temperature was investigated. RESULTS: 33 omnipresent species with incidence higher than 80% were selected as potential urine markers. The most represented chemical classes were ketones with 10 representatives, aldehydes (7 species) and sulfur compounds (7 species). The monitoring of the evolution of the urine scent demonstrated an increase in the emission of 26 omnipresent urinary volatiles (rise from 36% to 526%). The highest increase was noted for dimethyldisulfide and dimethyltrisulfide (fivefold increase) and 3-methyl-2-butanone, 4-methyl-2-pentanone and 3-hexanone (fourfold rise). Only three compounds exhibited decreasing trend; dimethylsulfone, octanal and propanal. CONCLUSION: The ubiquitous urine VOCs identified within this study create a library of potential markers of human urine to be verified in further field studies, involving portable and sensitive instruments, directly applied in the field.


Assuntos
Trabalho de Resgate/métodos , Colapso Estrutural , Urina/química , Compostos Orgânicos Voláteis/urina , Adulto , Biomarcadores/química , Biomarcadores/urina , Estudos de Coortes , Desastres , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Odorantes/análise , Microextração em Fase Sólida/métodos , Manejo de Espécimes , Compostos Orgânicos Voláteis/química , Adulto Jovem
17.
J Math Biol ; 63(5): 959-99, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21234569

RESUMO

Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide (NO) have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which may reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways, (ii) the concentrations in the tracheo-bronchial lining fluid, (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, the model illuminates the discrepancies between observed and theoretically predicted blood-breath ratios of acetone during resting conditions, i.e., in steady state. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases and thus is expected to have general relevance for a wider range of blood-borne inert gases. The chief intention of the present modeling study is to provide mechanistic relationships for further investigating the exhalation kinetics of acetone and other water-soluble species. This quantitative approach is a first step towards new guidelines for breath gas analyses of volatile organic compounds, similar to those for nitric oxide.


Assuntos
Acetona/análise , Testes Respiratórios/métodos , Modelos Biológicos , Compostos Orgânicos Voláteis/análise , Acetona/farmacocinética , Humanos , Masculino
18.
J Theor Biol ; 267(4): 626-37, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20869370

RESUMO

Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.


Assuntos
Butadienos/análise , Expiração/fisiologia , Hemiterpenos/análise , Modelos Biológicos , Pentanos/análise , Adulto , Testes Respiratórios , Simulação por Computador , Ergometria , Exercício Físico/fisiologia , Humanos , Masculino , Troca Gasosa Pulmonar , Reprodutibilidade dos Testes
19.
Anal Bioanal Chem ; 398(5): 2031-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20820995

RESUMO

The aim of the present study was to evaluate the suitability of ion mobility spectrometry (IMS) for the detection of human urine as an indication of human presence during urban search and rescue operations in collapsed buildings. To this end, IMS with a radioactive ionization source and a multicapillary column was used to detect volatile organic compounds (VOCs) emitted from human urine. A study involving a group of 30 healthy volunteers resulted in the selection of seven volatile species, namely acetone, propanal, 3-methyl-2-butanone, 2-methylpropanal, 4-heptanone, 2-heptanone and octanal, which were detected in all samples. Additionally, a preliminary study on the permeation of urine volatiles through the materials surrounding the voids of collapsed buildings was performed. In this study, quartz sand was used as a representative imitating material. Four compounds, namely 3-methyl-2-butanone, octanal, acetone and 2-heptanone, were found to permeate through the sand layers during all experiments. Moreover, their permeation times were the shortest. Although IMS can be considered as a potential technique suitable for the detection, localization and monitoring of VOCs evolved from human urine, further investigation is necessary prior to selecting field chemical methods for the early location of trapped victims.


Assuntos
Espectrofotometria/métodos , Urina/química , Compostos Orgânicos Voláteis/química , Humanos , Socorro em Desastres
20.
Biomed Eng Online ; 9: 2, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053282

RESUMO

BACKGROUND: Interruption of cardiopulmonary resuscitation (CPR) impairs the perfusion of the fibrillating heart, worsening the chance for successful defibrillation. Therefore ECG-analysis during ongoing chest compression could provide a considerable progress in comparison with standard analysis techniques working only during "hands-off" intervals. METHODS: For the reduction of CPR-related artifacts in ventricular fibrillation ECG we use a localized version of the coherent line removal algorithm developed by Sintes and Schutz. This method can be used for removal of periodic signals with sufficiently coupled harmonics, and can be adapted to specific situations by optimal choice of its parameters (e.g., the number of harmonics considered for analysis and reconstruction). Our testing was done with 14 different human ventricular fibrillation (VF) ECGs, whose fibrillation band lies in a frequency range of [1 Hz, 5 Hz]. The VF-ECGs were mixed with 12 different ECG-CPR-artifacts recorded in an animal experiment during asystole. The length of each of the ECG-data was chosen to be 20 sec, and testing was done for all 168 = 14 x 12 pairs of data. VF-to-CPR ratio was chosen as -20 dB, -15 dB, -10 dB, -5 dB, 0 dB, 5 dB and 10 dB. Here -20 dB corresponds to the highest level of CPR-artifacts. RESULTS: For non-optimized coherent line removal based on signals with a VF-to-CPR ratio of -20 dB, -15 dB, -10 dB, -5 dB and 0 dB, the signal-to-noise gains (SNR-gains) were 9.3 +/- 2.4 dB, 9.4 +/- 2.4 dB, 9.5 +/- 2.5 dB, 9.3 +/- 2.5 dB and 8.0 +/- 2.7 (mean +/- std, n = 168), respectively. Characteristically, an original VF-to-CPR ratio of -10 dB, corresponds to a variance ratio var(VF):var(CPR) = 1:10. An improvement by 9.5 dB results in a restored VF-to-CPR ratio of -0.5 dB, corresponding to a variance ratio var(VF):var(CPR) = 1:1.1, the variance of the CPR in the signal being reduced by a factor of 8.9. DISCUSSION: The localized coherent line removal algorithm uses the information of a single ECG channel. In contrast to multi-channel algorithms, no additional information such as thorax impedance, blood pressure, or pressure exerted on the sternum during CPR is required. Predictors of defibrillation success such as mean and median frequency of VF-ECGs containing CPR-artifacts are prone to being governed by the harmonics of the artifacts. Reduction of CPR-artifacts is therefore necessary for determining reliable values for estimators of defibrillation success. CONCLUSIONS: The localized coherent line removal algorithm reduces CPR-artifacts in VF-ECG, but does not eliminate them. Our SNR-improvements are in the same range as offered by multichannel methods of Rheinberger et al., Husoy et al. and Aase et al. The latter two authors dealt with different ventricular rhythms (VF and VT), whereas here we dealt with VF, only. Additional developments are necessary before the algorithm can be tested in real CPR situations.


Assuntos
Reanimação Cardiopulmonar/métodos , Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Artefatos , Análise de Fourier , Humanos , Modelos Estatísticos , Processos Estocásticos , Suínos , Fibrilação Ventricular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA