Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(12): 1441-1452, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354065

RESUMO

Rationale: It is unknown whether preventing overdistention or collapse is more important when titrating positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS). Objectives: To compare PEEP targeting minimal overdistention or minimal collapse or using a compromise between collapse and overdistention in a randomized trial and to assess the impact on respiratory mechanics, gas exchange, inflammation, and hemodynamics. Methods: In a porcine model of ARDS, lung collapse and overdistention were estimated using electrical impedance tomography during a decremental PEEP titration. Pigs were randomized to three groups and ventilated for 12 hours: PEEP set at ⩽3% of overdistention (low overdistention), ⩽3% of collapse (low collapse), and the crossing point of collapse and overdistention. Measurements and Main Results: Thirty-six pigs (12 per group) were included. Median (interquartile range) values of PEEP were 7 (6-8), 11 (10-11), and 15 (12-16) cm H2O in the three groups (P < 0.001). With low overdistension, 6 (50%) pigs died, whereas survival was 100% in both other groups. Cause of death was hemodynamic in nature, with high transpulmonary vascular gradient and high epinephrine requirements. Compared with the other groups, pigs surviving with low overdistension had worse respiratory mechanics and gas exchange during the entire protocol. Minimal differences existed between crossing-point and low-collapse animals in physiological parameters, but postmortem alveolar density was more homogeneous in the crossing-point group. Inflammatory markers were not significantly different. Conclusions: PEEP to minimize overdistention resulted in high mortality in an animal model of ARDS. Minimizing collapse or choosing a compromise between collapse and overdistention may result in less lung injury, with potential benefits of the compromise approach.


Assuntos
Modelos Animais de Doenças , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Animais , Suínos , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Atelectasia Pulmonar/terapia , Atelectasia Pulmonar/fisiopatologia , Distribuição Aleatória , Mecânica Respiratória/fisiologia , Hemodinâmica/fisiologia , Feminino , Troca Gasosa Pulmonar/fisiologia
2.
Am J Respir Crit Care Med ; 209(5): 563-572, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190718

RESUMO

Rationale: Hypoxemia during mechanical ventilation might be worsened by expiratory muscle activity, which reduces end-expiratory lung volume through lung collapse. A proposed mechanism of benefit of neuromuscular blockade in acute respiratory distress syndrome (ARDS) is the abolition of expiratory efforts. This may contribute to the restoration of lung volumes. The prevalence of this phenomenon, however, is unknown. Objectives: To investigate the incidence and amount of end-expiratory lung impedance (EELI) increase after the administration of neuromuscular blocking agents (NMBAs), clinical factors associated with this phenomenon, its impact on regional lung ventilation, and any association with changes in pleural pressure. Methods: We included mechanically ventilated patients with ARDS monitored with electrical impedance tomography (EIT) who received NMBAs in one of two centers. We measured changes in EELI, a surrogate for end-expiratory lung volume, before and after NMBA administration. In an additional 10 patients, we investigated the characteristic signatures of expiratory muscle activity depicted by EIT and esophageal catheters simultaneously. Clinical factors associated with EELI changes were assessed. Measurements and Main Results: We included 46 patients, half of whom showed an increase in EELI of >10% of the corresponding Vt (46.2%; IQR, 23.9-60.9%). The degree of EELI increase correlated positively with fentanyl dosage and negatively with changes in end-expiratory pleural pressures. This suggests that expiratory muscle activity might exert strong counter-effects against positive end-expiratory pressure that are possibly aggravated by fentanyl. Conclusions: Administration of NMBAs during EIT monitoring revealed activity of expiratory muscles in half of patients with ARDS. The resultant increase in EELI had a dose-response relationship with fentanyl dosage. This suggests a potential side effect of fentanyl during protective ventilation.


Assuntos
Bloqueadores Neuromusculares , Síndrome do Desconforto Respiratório , Humanos , Respiração com Pressão Positiva/métodos , Pulmão , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Fentanila/uso terapêutico
3.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38127779

RESUMO

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Assuntos
Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Impedância Elétrica , Tomografia Computadorizada por Raios X/métodos , Pulmão , Insuficiência Respiratória/diagnóstico por imagem , Insuficiência Respiratória/terapia , Tomografia/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia
4.
Crit Care Med ; 52(1): 68-79, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695139

RESUMO

OBJECTIVES: High mechanical power and driving pressure (ΔP) have been associated with postoperative respiratory failure (PRF) and may be important parameters guiding mechanical ventilation. However, it remains unclear whether high mechanical power and ΔP merely reflect patients with poor respiratory system mechanics at risk of PRF. We investigated the effect of mechanical power and ΔP on PRF in cohorts after exact matching by patients' baseline respiratory system compliance. DESIGN: Hospital registry study. SETTING: Academic hospital in New England. PATIENTS: Adult patients undergoing general anesthesia between 2008 and 2020. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: The primary exposure was high (≥ 6.7 J/min, cohort median) versus low mechanical power and the key-secondary exposure was high (≥ 15.0 cm H 2 O) versus low ΔP. The primary endpoint was PRF (reintubation or unplanned noninvasive ventilation within seven days). Among 97,555 included patients, 4,030 (4.1%) developed PRF. In adjusted analyses, high intraoperative mechanical power and ΔP were associated with higher odds of PRF (adjusted odds ratio [aOR] 1.37 [95% CI, 1.25-1.50]; p < 0.001 and aOR 1.45 [95% CI, 1.31-1.60]; p < 0.001, respectively). There was large variability in applied ventilatory parameters, dependent on the anesthesia provider. This facilitated matching of 63,612 (mechanical power cohort) and 53,260 (ΔP cohort) patients, yielding identical baseline standardized respiratory system compliance (standardized difference [SDiff] = 0.00) with distinctly different mechanical power (9.4 [2.4] vs 4.9 [1.3] J/min; SDiff = -2.33) and ΔP (19.3 [4.1] vs 11.9 [2.1] cm H 2 O; SDiff = -2.27). After matching, high mechanical power and ΔP remained associated with higher risk of PRF (aOR 1.30 [95% CI, 1.17-1.45]; p < 0.001 and aOR 1.28 [95% CI, 1.12-1.46]; p < 0.001, respectively). CONCLUSIONS: High mechanical power and ΔP are associated with PRF independent of patient's baseline respiratory system compliance. Our findings support utilization of these parameters for titrating mechanical ventilation in the operating room and ICU.


Assuntos
Respiração Artificial , Insuficiência Respiratória , Adulto , Humanos , Mecânica Respiratória , Sistema Respiratório , Insuficiência Respiratória/epidemiologia , New England , Volume de Ventilação Pulmonar
5.
Anesthesiology ; 140(4): 752-764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207290

RESUMO

BACKGROUND: Lower fractional inspired oxygen tension (Fio2) during general anesthesia can reduce lung atelectasis. The objectives are to evaluate the effect of two Fio2 (0.4 and 1) during low positive end-expiratory pressure (PEEP) ventilation over lung perfusion distribution, volume, and regional ventilation. These variables were evaluated at two PEEP levels and unilateral lung atelectasis. METHODS: In this exploratory study, 10 healthy female piglets (32.3 ± 3.4 kg) underwent mechanical ventilation in two atelectasis models: (1) bilateral gravitational atelectasis (n = 6), induced by changes in PEEP and Fio2 in three combinations: high PEEP with low Fio2 (Fio2 = 0.4), zero PEEP (PEEP0) with low Fio2 (Fio2 = 0.4), and PEEP0 with high Fio2 (Fio2 = 1); and (2) unilateral atelectasis (n = 6), induced by left bronchial occlusion, with the left lung aerated (Fio2 = 0.21) and low aerated (Fio2 = 1; n = 5 for this step). Measurements were conducted after 10 min in each step, encompassing assessment of respiratory mechanics, oxygenation, and hemodynamics; lung ventilation and perfusion by electrical impedance tomography; and lung aeration and perfusion by computed tomography. RESULTS: During bilateral gravitational atelectasis, PEEP reduction increased atelectasis in dorsal regions, decreased respiratory compliance, and distributed lung ventilation to ventral regions with a parallel shift of perfusion to the same areas. With PEEP0, there were no differences between low and high Fio2 in respiratory compliance (23.9 ± 6.5 ml/cm H2O vs. 21.9 ± 5.0; P = 0.441), regional ventilation, and regional perfusion, despite higher lung collapse (18.6 ± 7.6% vs. 32.7 ± 14.5%; P = 0.045) with high Fio2. During unilateral lung atelectasis, the deaerated lung had a lower shunt (19.3 ± 3.6% vs. 25.3 ± 5.5%; P = 0.045) and lower computed tomography perfusion to the left lung (8.8 ± 1.8% vs. 23.8 ± 7.1%; P = 0.007). CONCLUSIONS: PEEP0 with low Fio2, compared with high Fio2, did not produce significant changes in respiratory system compliance, regional lung ventilation, and perfusion despite significantly lower lung collapse. After left bronchial occlusion, the shrinkage of the parenchyma with Fio2 = 1 enhanced hypoxic pulmonary vasoconstriction, reducing intrapulmonary shunt and perfusion of the nonventilated areas.


Assuntos
Atelectasia Pulmonar , Respiração Artificial , Animais , Feminino , Suínos , Respiração Artificial/métodos , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/terapia , Perfusão , Oxigênio
6.
Am J Respir Crit Care Med ; 207(11): 1441-1450, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705985

RESUMO

ICU clinicians rely on bedside physiological measurements to inform many routine clinical decisions. Because deranged physiology is usually associated with poor clinical outcomes, it is tempting to hypothesize that manipulating and intervening on physiological parameters might improve outcomes for patients. However, testing these hypotheses through mathematical models of the relationship between physiology and outcomes presents a number of important methodological challenges. These models reflect the theories of the researcher and can therefore be heavily influenced by one's assumptions and background beliefs. Model building must therefore be approached with great care and forethought, because failure to consider relevant sources of measurement error, confounding, coupling, and time dependency or failure to assess the direction of causality for associations of interest before modeling may give rise to spurious results. This paper outlines the main challenges in analyzing and interpreting these models and offers potential solutions to address these challenges.


Assuntos
Respiração Artificial , Insuficiência Respiratória , Humanos , Respiração Artificial/métodos , Insuficiência Respiratória/etiologia , Unidades de Terapia Intensiva
7.
Am J Respir Crit Care Med ; 208(1): 25-38, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097986

RESUMO

Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (ΔCollapse24-6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of ΔCollapse24-6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P < 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension. Clinical trial registered with www.clinicaltrials.gov (NCT04460859).


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Impedância Elétrica , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Tomografia Computadorizada por Raios X/métodos , Tomografia/métodos
8.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172929

RESUMO

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Circulação Pulmonar , Estudos Prospectivos , Troca Gasosa Pulmonar , COVID-19/complicações , SARS-CoV-2 , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Óxido Nítrico , Hipóxia , Insuficiência Respiratória/tratamento farmacológico , Administração por Inalação
9.
Anesthesiology ; 139(6): 815-826, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566686

RESUMO

BACKGROUND: Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS: Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS: Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS: Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes.


Assuntos
Síndrome do Desconforto Respiratório , Tomografia Computadorizada por Raios X , Masculino , Feminino , Suínos , Animais , Impedância Elétrica , Síndrome do Desconforto Respiratório/terapia , Pulmão , Perfusão , Tomografia/métodos
10.
Crit Care ; 27(1): 457, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001485

RESUMO

BACKGROUND: In the acute distress respiratory syndrome (ARDS), specific lung regions can be exposed to excessive strain due to heterogeneous disease, gravity-dependent lung collapse and injurious mechanical ventilation. Computed tomography (CT) is the gold standard for regional strain assessment. An alternative tool could be the electrical impedance tomography (EIT). We aimed to determine whether EIT-based methods can predict the dynamic relative regional strain (DRRS) between two levels of end-expiratory pressure (PEEP) in gravity-non-dependent and dependent lung regions. METHODS: Fourteen ARDS patients underwent CT and EIT acquisitions (at end-inspiratory and end-expiratory) at two levels of PEEP: a low-PEEP based on ARDS-net strategy and a high-PEEP titrated according to EIT. Three EIT-based methods for DRRS were compared to relative CT-based strain: (1) the change of the ratio between EIT ventilation and end-expiratory lung impedance in arbitrary units ([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/EELIAU high-PEEP]), (2) the change of ΔZ/EELI ratio calibrated to mL ([ΔZml low-PEEP/EELIml low-PEEP]/[ΔZml high-PEEP/EELIml high-PEEP]) using CT data, and (3) the relative change of ∆ZAU (∆ZAU low-PEEP/∆ZAU high-PEEP). We performed linear regressions analysis and calculated bias and limits of agreement to assess the performance of DRRS by EIT in comparison with CT. RESULTS: The DRRS assessed by (ΔZml low-PEEP/EELIml low-PEEP)/(ΔZml high-PEEP/EELIml high-PEEP) and ∆ZAU low-PEEP/∆ZAU high-PEEP showed good relationship and agreement with the CT method (R2 of 0.9050 and 0.8679, respectively, in non-dependent region; R2 of 0.8373 and 0.6588, respectively, in dependent region; biases ranging from - 0.11 to 0.51 and limits of agreement ranging from - 0.73 to 1.16 for both methods and lung regions). Conversely, DRRS based on EELIAU ([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/EELIAU high-PEEP]) exhibited a weak negative relationship and poor agreement with the CT method for both non-dependent and dependent regions (R2 ~ 0.3; bias of 3.11 and 2.08, and limits of agreement of - 2.13 to 8.34 and from - 1.49 to 5.64, respectively). CONCLUSION: Changes in DRRS during a PEEP trial in ARDS patients could be monitored using EIT, based on changes in ΔZmL/EELIml and ∆ZAU. The relative change ∆ZAU offers the advantage of not requiring CT data for calibration.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Humanos , Impedância Elétrica , Respiração com Pressão Positiva/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Tomografia/métodos
11.
Anesthesiology ; 136(5): 763-778, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348581

RESUMO

BACKGROUND: Strong spontaneous inspiratory efforts can be difficult to control and prohibit protective mechanical ventilation. Instead of using deep sedation and neuromuscular blockade, the authors hypothesized that perineural administration of lidocaine around the phrenic nerve would reduce tidal volume (VT) and peak transpulmonary pressure in spontaneously breathing patients with acute respiratory distress syndrome. METHODS: An established animal model of acute respiratory distress syndrome with six female pigs was used in a proof-of-concept study. The authors then evaluated this technique in nine mechanically ventilated patients under pressure support exhibiting driving pressure greater than 15 cm H2O or VT greater than 10 ml/kg of predicted body weight. Esophageal and transpulmonary pressures, electrical activity of the diaphragm, and electrical impedance tomography were measured in pigs and patients. Ultrasound imaging and a nerve stimulator were used to identify the phrenic nerve, and perineural lidocaine was administered sequentially around the left and right phrenic nerves. RESULTS: Results are presented as median [interquartile range, 25th to 75th percentiles]. In pigs, VT decreased from 7.4 ml/kg [7.2 to 8.4] to 5.9 ml/kg [5.5 to 6.6] (P < 0.001), as did peak transpulmonary pressure (25.8 cm H2O [20.2 to 27.2] to 17.7 cm H2O [13.8 to 18.8]; P < 0.001) and driving pressure (28.7 cm H2O [20.4 to 30.8] to 19.4 cm H2O [15.2 to 22.9]; P < 0.001). Ventilation in the most dependent part decreased from 29.3% [26.4 to 29.5] to 20.1% [15.3 to 20.8] (P < 0.001). In patients, VT decreased (8.2 ml/ kg [7.9 to 11.1] to 6.0 ml/ kg [5.7 to 6.7]; P < 0.001), as did driving pressure (24.7 cm H2O [20.4 to 34.5] to 18.4 cm H2O [16.8 to 20.7]; P < 0.001). Esophageal pressure, peak transpulmonary pressure, and electrical activity of the diaphragm also decreased. Dependent ventilation only slightly decreased from 11.5% [8.5 to 12.6] to 7.9% [5.3 to 8.6] (P = 0.005). Respiratory rate did not vary. Variables recovered 1 to 12.7 h [6.7 to 13.7] after phrenic nerve block. CONCLUSIONS: Phrenic nerve block is feasible, lasts around 12 h, and reduces VT and driving pressure without changing respiratory rate in patients under assisted ventilation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Estado Terminal , Modelos Animais de Doenças , Feminino , Humanos , Lidocaína , Nervo Frênico , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória/fisiologia , Suínos , Volume de Ventilação Pulmonar/fisiologia
12.
Crit Care ; 26(1): 47, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180891

RESUMO

BACKGROUND: An abrupt lung deflation in rodents results in lung injury through vascular mechanisms. Ventilator disconnections during endo-tracheal suctioning in humans often cause cardio-respiratory instability. Whether repeated disconnections or lung deflations cause lung injury or oedema is not known and was tested here in a porcine large animal model. METHODS: Yorkshire pigs (~ 12 weeks) were studied in three series. First, we compared PEEP abruptly deflated from 26 cmH2O or from PEEP 5 cmH2O to zero. Second, pigs were randomly crossed over to receive rapid versus gradual PEEP removal from 20 cmH2O. Third, pigs with relative volume overload, were ventilated with PEEP 15 cmH2O and randomized to repeated ETT disconnections (15 s every 15 min) or no disconnection for 3 h. Hemodynamics, pulmonary variables were monitored, and lung histology and bronchoalveolar lavage studied. RESULTS: As compared to PEEP 5 cmH2O, abrupt deflation from PEEP 26 cmH2O increased PVR, lowered oxygenation, and increased lung wet-to-dry ratio. From PEEP 20 cmH2O, gradual versus abrupt deflation mitigated the changes in oxygenation and vascular resistance. From PEEP 15, repeated disconnections in presence of fluid loading led to reduced compliance, lower oxygenation, higher pulmonary artery pressure, higher lung wet-to-dry ratio, higher lung injury score and increased oedema on morphometry, compared to no disconnects. CONCLUSION: Single abrupt deflation from high PEEP, and repeated short deflations from moderate PEEP cause pulmonary oedema, impaired oxygenation, and increased PVR, in this large animal model, thus replicating our previous finding from rodents. Rapid deflation may thus be a clinically relevant cause of impaired lung function, which may be attenuated by gradual pressure release.


Assuntos
Lesão Pulmonar , Edema Pulmonar , Síndrome do Desconforto Respiratório , Animais , Respiração com Pressão Positiva/métodos , Edema Pulmonar/etiologia , Respiração Artificial , Suínos
13.
Crit Care ; 26(1): 259, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038890

RESUMO

BACKGROUND: Insufficient or excessive respiratory effort during acute hypoxemic respiratory failure (AHRF) increases the risk of lung and diaphragm injury. We sought to establish whether respiratory effort can be optimized to achieve lung- and diaphragm-protective (LDP) targets (esophageal pressure swing - 3 to - 8 cm H2O; dynamic transpulmonary driving pressure ≤ 15 cm H2O) during AHRF. METHODS: In patients with early AHRF, spontaneous breathing was initiated as soon as passive ventilation was not deemed mandatory. Inspiratory pressure, sedation, positive end-expiratory pressure (PEEP), and sweep gas flow (in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO)) were systematically titrated to achieve LDP targets. Additionally, partial neuromuscular blockade (pNMBA) was administered in patients with refractory excessive respiratory effort. RESULTS: Of 30 patients enrolled, most had severe AHRF; 16 required VV-ECMO. Respiratory effort was absent in all at enrolment. After initiating spontaneous breathing, most exhibited high respiratory effort and only 6/30 met LDP targets. After titrating ventilation, sedation, and sweep gas flow, LDP targets were achieved in 20/30. LDP targets were more likely to be achieved in patients on VV-ECMO (median OR 10, 95% CrI 2, 81) and at the PEEP level associated with improved dynamic compliance (median OR 33, 95% CrI 5, 898). Administration of pNMBA to patients with refractory excessive effort was well-tolerated and effectively achieved LDP targets. CONCLUSION: Respiratory effort is frequently absent  under deep sedation but becomes excessive when spontaneous breathing is permitted in patients with moderate or severe AHRF. Systematically titrating ventilation and sedation can optimize respiratory effort for lung and diaphragm protection in most patients. VV-ECMO can greatly facilitate the delivery of a LDP strategy. TRIAL REGISTRATION: This trial was registered in Clinicaltrials.gov in August 2018 (NCT03612583).


Assuntos
Diafragma , Insuficiência Respiratória , Humanos , Pulmão , Respiração com Pressão Positiva , Respiração Artificial , Insuficiência Respiratória/terapia
14.
Acta Anaesthesiol Scand ; 66(1): 30-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34460936

RESUMO

BACKGROUND: The preventive role of an intraoperative recruitment maneuver plus open lung approach (RM + OLA) ventilation on postoperative pulmonary complications (PPC) remains unclear. We aimed at investigating whether an intraoperative open lung condition reduces the risk of developing a composite of PPCs. METHODS: Post hoc analysis of two randomized controlled trials including patients undergoing abdominal surgery. Patients were classified according to the intraoperative lung condition as "open" (OL) or "non-open" (NOL) if PaO2 /FIO2 ratio was ≥ or <400 mmHg, respectively. We used a multivariable logistic regression model that included potential confounders selected with directed acyclic graphs (DAG) using Dagitty software built with variables that were considered clinically relevant based on biological mechanism or evidence from previously published data. PPCs included severe acute respiratory failure, acute respiratory distress syndrome, and pneumonia. RESULTS: A total of 1480 patients were included in the final analysis, with 718 (49%) classified as OL. The rate of severe PPCs during the first seven postoperative days was 6.0% (7.9% in the NOL and 4.4% in the OL group, p = .007). OL was independently associated with a lower risk for severe PPCs during the first 7 and 30 postoperative days [odds ratio of 0.58 (95% CI 0.34-0.99, p = .04) and 0.56 (95% CI 0.34-0.94, p = .03), respectively]. CONCLUSIONS: An intraoperative open lung condition was associated with a reduced risk of developing severe PPCs in intermediate-to-high risk patients undergoing abdominal surgery. TRIAL REGISTRATION: Registered at clinicaltrials.gov NCT02158923 (iPROVE), NCT02776046 (iPROVE-O2).


Assuntos
Pneumopatias , Humanos , Pulmão , Pneumopatias/epidemiologia , Pneumopatias/etiologia , Complicações Pós-Operatórias/epidemiologia , Período Pós-Operatório , Respiração Artificial
15.
Am J Respir Crit Care Med ; 203(10): 1266-1274, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33406012

RESUMO

Rationale: The physiological basis of lung protection and the impact of positive end-expiratory pressure (PEEP) during pronation in acute respiratory distress syndrome are not fully elucidated. Objectives: To compare pleural pressure (Ppl) gradient, ventilation distribution, and regional compliance between dependent and nondependent lungs, and investigate the effect of PEEP during supination and pronation. Methods: We used a two-hit model of lung injury (saline lavage and high-volume ventilation) in 14 mechanically ventilated pigs and studied supine and prone positions. Global and regional lung mechanics including Ppl and distribution of ventilation (electrical impedance tomography) were analyzed across PEEP steps from 20 to 3 cm H2O. Two pigs underwent computed tomography scans: tidal recruitment and hyperinflation were calculated. Measurements and Main Results: Pronation improved oxygenation, increased Ppl, thus decreasing transpulmonary pressure for any PEEP, and reduced the dorsal-ventral pleural pressure gradient at PEEP < 10 cm H2O. The distribution of ventilation was homogenized between dependent and nondependent while prone and was less dependent on the PEEP level than while supine. The highest regional compliance was achieved at different PEEP levels in dependent and nondependent regions in supine position (15 and 8 cm H2O), but for similar values in prone position (13 and 12 cm H2O). Tidal recruitment was more evenly distributed (dependent and nondependent), hyperinflation lower, and lungs cephalocaudally longer in the prone position. Conclusions: In this lung injury model, pronation reduces the vertical pleural pressure gradient and homogenizes regional ventilation and compliance between the dependent and nondependent regions. Homogenization is much less dependent on the PEEP level in prone than in supine positon.


Assuntos
Posicionamento do Paciente , Respiração com Pressão Positiva , Decúbito Ventral , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Decúbito Dorsal , Animais , Modelos Animais de Doenças , Complacência Pulmonar/fisiologia , Lesão Pulmonar/complicações , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Cavidade Pleural/fisiopatologia , Síndrome do Desconforto Respiratório/etiologia , Mecânica Respiratória/fisiologia , Suínos
16.
Am J Respir Crit Care Med ; 203(11): 1378-1385, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439781

RESUMO

Rationale: If the risk of ventilator-induced lung injury in acute respiratory distress syndrome (ARDS) is causally determined by driving pressure rather than by Vt, then the effect of ventilation with lower Vt on mortality would be predicted to vary according to respiratory system elastance (Ers). Objectives: To determine whether the mortality benefit of ventilation with lower Vt varies according to Ers. Methods: In a secondary analysis of patients from five randomized trials of lower- versus higher-Vt ventilation strategies in ARDS and acute hypoxemic respiratory failure, the posterior probability of an interaction between the randomized Vt strategy and Ers on 60-day mortality was computed using Bayesian multivariable logistic regression. Measurements and Main Results: Of 1,096 patients available for analysis, 416 (38%) died by Day 60. The posterior probability that the mortality benefit from lower-Vt ventilation strategies varied with Ers was 93% (posterior median interaction odds ratio, 0.80 per cm H2O/[ml/kg]; 90% credible interval, 0.63-1.02). Ers was classified as low (<2 cm H2O/[ml/kg], n = 321, 32%), intermediate (2-3 cm H2O/[ml/kg], n = 475, 46%), and high (>3 cm H2O/[ml/kg], n = 224, 22%). In these groups, the posterior probabilities of an absolute risk reduction in mortality ≥ 1% were 55%, 82%, and 92%, respectively. The posterior probabilities of an absolute risk reduction ≥ 5% were 29%, 58%, and 82%, respectively. Conclusions: The mortality benefit of ventilation with lower Vt in ARDS varies according to elastance, suggesting that lung-protective ventilation strategies should primarily target driving pressure rather than Vt.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Teorema de Bayes , Elasticidade , Feminino , Humanos , Modelos Logísticos , Masculino , Síndrome do Desconforto Respiratório/fisiopatologia , Estudos Retrospectivos , Taxa de Sobrevida , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
17.
Am J Respir Crit Care Med ; 203(8): 969-976, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091317

RESUMO

Rationale: Asymmetrical lung injury is a frequent clinical presentation. Regional distribution of Vt and positive end-expiratory pressure (PEEP) could result in hyperinflation of the less-injured lung. The validity of esophageal pressure (Pes) is unknown.Objectives: To compare, in asymmetrical lung injury, Pes with directly measured pleural pressures (Ppl) of both sides and investigate how PEEP impacts ventilation distribution and the regional driving transpulmonary pressure (inspiratory - expiratory).Methods: Fourteen mechanically ventilated pigs with lung injury were studied. One lung was blocked while the contralateral one underwent surfactant lavage and injurious ventilation. Airway pressure and Pes were measured, as was Ppl in the dorsal and ventral pleural space adjacent to each lung. Distribution of ventilation was assessed by electrical impedance tomography. PEEP was studied through decremental steps.Measurements and Results: Ventral and dorsal Ppl were similar between the injured and the noninjured lung across all PEEP levels. Dorsal Ppl and Pes were similar. The driving transpulmonary pressure was similar in the two lungs. Vt distribution between lungs was different at zero end-expiratory pressure (≈70% of Vt going in noninjured lung) owing to different respiratory system compliance (8.3 ml/cm H2O noninjured lung vs. 3.7 ml/cm H2O injured lung). PEEP at 10 cm H2O with transpulmonary pressure around zero homogenized Vt distribution opening the lungs. PEEP ≥16 cm H2O equalized distribution of Vt but with overdistension for both lungs.Conclusions: Despite asymmetrical lung injury, Ppl between injured and noninjured lungs is equalized and esophageal pressure is a reliable estimate of dorsal Ppl. Driving transpulmonary pressure is similar for both lungs. Vt distribution results from regional respiratory system compliance. Moderate PEEP homogenizes Vt distribution between lungs without generating hyperinflation.


Assuntos
Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia , Suínos , Animais , Modelos Animais
18.
Am J Respir Crit Care Med ; 203(5): 575-584, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876469

RESUMO

Rationale: Obesity is characterized by elevated pleural pressure (Ppl) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS).Objectives: To determine the effects of a lung recruitment maneuver (LRM) in the presence of elevated Ppl on hemodynamics, left and right ventricular pressure, and pulmonary vascular resistance. We hypothesized that elevated Ppl protects the cardiovascular system against high airway pressure and prevents lung overdistension.Methods: First, an interventional crossover trial in adult subjects with ARDS and a body mass index ≥ 35 kg/m2 (n = 21) was performed to explore the hemodynamic consequences of the LRM. Second, cardiovascular function was studied during low and high positive end-expiratory pressure (PEEP) in a model of swine with ARDS and high Ppl (n = 9) versus healthy swine with normal Ppl (n = 6).Measurements and Main Results: Subjects with ARDS and obesity (body mass index = 57 ± 12 kg/m2) after LRM required an increase in PEEP of 8 (95% confidence interval [95% CI], 7-10) cm H2O above traditional ARDS Network settings to improve lung function, oxygenation and [Formula: see text]/[Formula: see text] matching, without impairment of hemodynamics or right heart function. ARDS swine with high Ppl demonstrated unchanged transmural left ventricular pressure and systemic blood pressure after the LRM protocol. Pulmonary arterial hypertension decreased (8 [95% CI, 13-4] mm Hg), as did vascular resistance (1.5 [95% CI, 2.2-0.9] Wood units) and transmural right ventricular pressure (10 [95% CI, 15-6] mm Hg) during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized the [Formula: see text]/[Formula: see text] ratio.Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. In addition, patients with ARDS and class III obesity hemodynamically tolerate LRM with high airway pressure.Clinical trial registered with www.clinicaltrials.gov (NCT02503241).


Assuntos
Atelectasia Pulmonar , Síndrome do Desconforto Respiratório , Choque , Animais , Hemodinâmica/fisiologia , Humanos , Obesidade/complicações , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Suínos
19.
Am J Respir Crit Care Med ; 204(3): 303-311, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784486

RESUMO

Rationale: Mortality in acute respiratory distress syndrome (ARDS) has decreased after the adoption of lung-protective strategies. Lower Vt, lower driving pressure (ΔP), lower respiratory rates (RR), and higher end-expiratory pressure have all been suggested as key components of lung protection strategies. A unifying theoretical explanation has been proposed that attributes lung injury to the energy transfer rate (mechanical power) from the ventilator to the patient, calculated from a combination of several ventilator variables.Objectives: To assess the impact of mechanical power on mortality in patients with ARDS as compared with that of primary ventilator variables such as the ΔP, Vt, and RR.Methods: We obtained data on ventilatory variables and mechanical power from a pooled database of patients with ARDS who had participated in six randomized clinical trials of protective mechanical ventilation and one large observational cohort of patients with ARDS. The primary outcome was mortality at 28 days or 60 days.Measurements and Main Results: We included 4,549 patients (38% women; mean age, 55 ± 23 yr). The average mechanical power was 0.32 ± 0.14 J · min-1 · kg-1 of predicted body weight, the ΔP was 15.0 ± 5.8 cm H2O, and the RR was 25.7 ± 7.4 breaths/min. The driving pressure, RR, and mechanical power were significant predictors of mortality in adjusted analyses. The impact of the ΔP on mortality was four times as large as that of the RR.Conclusions: Mechanical power was associated with mortality during controlled mechanical ventilation in ARDS, but a simpler model using only the ΔP and RR was equivalent.


Assuntos
Mortalidade , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Adulto , Idoso , Transferência de Energia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Taxa Respiratória , Lesão Pulmonar Induzida por Ventilação Mecânica
20.
Am J Respir Crit Care Med ; 202(7): 950-961, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516052

RESUMO

Mechanical ventilation can cause acute diaphragm atrophy and injury, and this is associated with poor clinical outcomes. Although the importance and impact of lung-protective ventilation is widely appreciated and well established, the concept of diaphragm-protective ventilation has recently emerged as a potential complementary therapeutic strategy. This Perspective, developed from discussions at a meeting of international experts convened by PLUG (the Pleural Pressure Working Group) of the European Society of Intensive Care Medicine, outlines a conceptual framework for an integrated lung- and diaphragm-protective approach to mechanical ventilation on the basis of growing evidence about mechanisms of injury. We propose targets for diaphragm protection based on respiratory effort and patient-ventilator synchrony. The potential for conflict between diaphragm protection and lung protection under certain conditions is discussed; we emphasize that when conflicts arise, lung protection must be prioritized over diaphragm protection. Monitoring respiratory effort is essential to concomitantly protect both the diaphragm and the lung during mechanical ventilation. To implement lung- and diaphragm-protective ventilation, new approaches to monitoring, to setting the ventilator, and to titrating sedation will be required. Adjunctive interventions, including extracorporeal life support techniques, phrenic nerve stimulation, and clinical decision-support systems, may also play an important role in selected patients in the future. Evaluating the clinical impact of this new paradigm will be challenging, owing to the complexity of the intervention. The concept of lung- and diaphragm-protective ventilation presents a new opportunity to potentially improve clinical outcomes for critically ill patients.


Assuntos
Diafragma/lesões , Atrofia Muscular/prevenção & controle , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Consenso , Cuidados Críticos , Sistemas de Apoio a Decisões Clínicas , Terapia por Estimulação Elétrica , Oxigenação por Membrana Extracorpórea , Humanos , Atrofia Muscular/etiologia , Nervo Frênico , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA