Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Fungi (Basel) ; 8(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36294557

RESUMO

Antifungal resistance has become more frequent, either due to the emergence of naturally resistant species or the development of mechanisms that lead to resistance in previously susceptible species. Among these fungal species of global threat, Candida auris stands out for commonly being highly resistant to antifungal drugs, and some isolates are pan-resistant. The rate of mortality linked to C. auris infections varies from 28% to 78%. In this study, we characterized C. auris extracellular vesicles (EVs) in the presence of caspofungin, an echinocandin, which is the recommended first line antifungal for the treatment of infections due to this emerging pathogen. Furthermore, we also analyzed the protein and RNA content of EVs generated by C. auris cultivated with or without treatment with caspofungin. We observed that caspofungin led to the increased production of EVs, and treatment also altered the type and quantity of RNA molecules and proteins enclosed in the EVs. There were distinct classes of RNAs in the EVs with ncRNAs being the most identified molecules, and tRNA-fragments (tRFs) were abundant in each of the strains studied. We also identified anti-sense RNAs, varying from 21 to 55 nt in length. The differentially abundant mRNAs detected in EVs isolated from yeast subjected to caspofungin treatment were related to translation, nucleosome core and cell wall. The differentially regulated proteins identified in the EVs produced during caspofungin treatment were consistent with the results observed with the RNAs, with the enriched terms being related to translation and cell wall. Our study adds new information on how an echinocandin can affect the EV pathway, which is associated with the yeast cell being able to evade treatment and persist in the host. The ability of C. auris to efficiently alter the composition of EVs may represent a mechanism for the fungus to mitigate the effects of antifungal agents.

2.
mSystems ; 6(4): e0082221, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427507

RESUMO

Candida auris is a recently described multidrug-resistant pathogenic fungus that is increasingly responsible for health care-associated outbreaks across the world. Bloodstream infections of this fungus cause death in up to 70% of cases. Aggravating this scenario, the disease-promoting mechanisms of C. auris are poorly understood. Fungi release extracellular vesicles (EVs) that carry a broad range of molecules, including proteins, lipids, carbohydrates, pigments, and RNA, many of which are virulence factors. Here, we carried out a comparative molecular characterization of C. auris and Candida albicans EVs and evaluated their capacity to modulate effector mechanisms of host immune defense. Using proteomics, lipidomics, and transcriptomics, we found that C. auris released EVs with payloads that were significantly different from those of EVs released by C. albicans. EVs released by C. auris potentiated the adhesion of this yeast to an epithelial cell monolayer, while EVs from C. albicans had no effect. C. albicans EVs primed macrophages for enhanced intracellular yeast killing, whereas C. auris EVs promoted survival of the fungal cells. Moreover, EVs from both C. auris and C. albicans induced the activation of bone marrow-derived dendritic cells. Together, our findings show distinct profiles and properties of EVs released by C. auris and by C. albicans and highlight the potential contribution of C. auris EVs to the pathogenesis of this emerging pathogen. IMPORTANCE Candida auris is a recently described multidrug-resistant pathogenic fungus that is responsible for outbreaks across the globe, particularly in the context of nosocomial infections. Its virulence factors and pathogenesis are poorly understood. Here, we tested the hypothesis that extracellular vesicles (EVs) released by C. auris are a disease-promoting factor. We describe the production of EVs by C. auris and compare their biological activities against those of the better-characterized EVs from C. albicans. C. auris EVs have immunoregulatory properties, of which some are opposite those of C. albicans EVs. We also explored the cargo and structural components of those vesicles and found that they are remarkably distinct compared to EVs from C. auris's phylogenetic relative Candida albicans.

3.
Microbiol Spectr ; 9(3): e0153821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908466

RESUMO

Emerging and reemerging pathogens are a worldwide concern, and it is predicted that these microbes will cause severe outbreaks. Candida auris affects people with weakened immune systems, particularly those who are hospitalized or are in health care facilities. Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all domains of life. EVs can deliver functional molecules to target cells, including proteins and nucleic acids, especially RNA molecules. EVs from several pathogenic fungi species play diverse biological roles related to cell-cell communication and pathogen-host interaction. In this study, we describe a data set which we produced by sequencing the RNA content of EVs from C. auris under normal growth conditions and in the presence of the antifungal caspofungin, a first-line drug to treat this fungus. To generate a more complete data set for future comparative studies, we also sequenced the RNA cellular content of EVs under the same conditions. This data set addresses a previously unexplored area of fungal biology regarding cellular small RNA and EV RNA. Our data will provide a molecular basis for the study of the aspects associated with antifungal treatment, gene expression response, and EV composition in C. auris. These data will also allow the exploration of small RNA content in the fungal kingdom and might serve as an informative basis for studies on the mechanisms by which molecules are directed to fungal EVs. IMPORTANCE Candida auris, a relevant emerging human-pathogenic yeast, is the first fungus to be called a global public health threat by the WHO. This is because of its rapid spread on all inhabited continents, together with its extremely high frequency of drug and multidrug resistance. In our study, we generated a large data set for 3 distinct strains of C. auris and obtained cellular small RNA fraction as well as extracellular vesicle RNA (EV-RNA) during normal growth conditions and after treatment with caspofungin, the first-line drug used to treat C. auris infection.


Assuntos
Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/metabolismo , Vesículas Extracelulares/metabolismo , RNA/metabolismo , Candida auris/genética , Candidíase Invasiva/tratamento farmacológico , Testes Diagnósticos de Rotina , Fungos/genética , Técnicas Genéticas , Interações Hospedeiro-Patógeno , Humanos , Testes de Sensibilidade Microbiana
4.
Comput Struct Biotechnol J ; 19: 5264-5277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630944

RESUMO

Candida auris has emerged as a serious worldwide threat by causing opportunistic infections that are frequently resistant to one or more conventional antifungal medications resulting in high mortality rates. Against this backdrop, health warnings around the world have focused efforts on understanding C. auris fungal biology and effective prevention and treatment approaches to combat this fungus. To date, there is little information about the differentially expressed genes when this fungus is treated with conventional antifungals, and caspofungin is a standard echinocandin deployed in the therapy against C. auris. In this work, we treated two distinct strains of C. auris for 24 h with caspofungin, and the cellular responses were evaluated at the morphological, translational and transcriptional levels. We first observed that the echinocandin caused morphological alterations, aggregation of yeast cells, and modifications in the cell wall composition of C. auris. Transcriptomic analysis revealed an upregulation of genes related to the synthesis of the cell wall, ribosome, and cell cycle after exposure to caspofungin. Supporting these findings, the integrated proteomic analysis showed that caspofungin-treated cells were enriched in ribosome-related proteins and cell wall, especially mannoproteins. Altogether, these results provide further insights into the biology of C. auris and expands our understanding regarding the antifungal activity of caspofungin and reveal cellular targets, as the mannose metabolism, that can be further explored for the development of novel antifungals.

5.
Curr Protein Pept Sci ; 20(10): 1027-1036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31142247

RESUMO

Extracellular vesicles (EVs) are membranous structures surrounded by a lipid bilayer required for the export of fungal proteins, lipids, toxins, nucleic acids, pigments, and polysaccharides. Proteomic studies of the content of fungal EVs revealed the presence of molecules involved in cell metabolism, signal transduction, and virulence, among others. EVs are evolutionarily conserved in all three domains of life and play important roles in cell-cell communication. Recently, the bidirectional transport of EVs was characterized through the demonstration that EVs can be released and captured by fungal cells. In fungi, EVs participate in immunomodulation through the delivery of virulence factors, antigens and allergens, but further studies are necessary to investigate their potential roles as carriers of diagnostic biomarkers and in drug delivery or antifungal resistance transmission. In this review, we discuss the roles of fungal EVs and their cargo in cell-cell communication, host-pathogen interactions, and environmental perception. The functions of EVs as vehicles for transporting fungal proteins and virulence factors are also addressed, as well as their use as biomarkers for the diagnosis of diseases and possible participation in antifungal responses.


Assuntos
Portadores de Fármacos/química , Vesículas Extracelulares/química , Proteínas Fúngicas/química , Fatores de Virulência/química , Animais , Portadores de Fármacos/metabolismo , Farmacorresistência Fúngica , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Fungos/virologia , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fatores de Virulência/metabolismo
6.
Insects ; 9(2)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921814

RESUMO

Duponchelia fovealis (Lepidoptera: Crambidae) is an invasive species that has had a large impact on strawberry crops in Brazil. Pesticides have had limited effectiveness and the use of biological control agents to improve its management is the most appropriate approach. The aim of this study was to evaluate the pathogenicity and virulence of entomopathogenic fungi—isolated from soil—against Duponchelia fovealis larvae under laboratory and greenhouse conditions. Pathogenicity screenings were performed for twenty isolates from Beauveria bassiana, Beauveria caledonica, Isaria javanica, Metarhizium anisopliae, and Lecanicillium sp. against third instar larvae of D. fovealis at the concentration of 108 conidia·mL−1. Lethal concentration (LC50) and lethal time (LT50) were determined for the most pathogenic isolates and for one commercial mycoinsecticide. Mortality rates varied from 10 to 89%. The isolates B. bassiana Bea1, Bea110, Bea111 and I. javanica Isa340 were the most pathogenic. The most virulent isolates were B. bassiana Bea111 and I. javanica Isa340 with LC50 values of 2.33 × 106 and 9.69 × 105 conidia·mL−1, respectively. Under greenhouse conditions, the efficacy of LC50 of the isolates I. javanica Isa340 and B. bassiana Bea111 were 45% and 52%, respectively. Our results indicate that these isolates are strong candidates for application in the control of D. fovealis. This study is the first evaluation of soil-borne entomopathogenic fungi against D. fovealis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA