Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 98(7): e0053724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38934597

RESUMO

Various isolates of the Cydia pomonella granulovirus (CpGV) are used as insect pest control agents against codling moth (CM, Cydia pomonella L.), a predominant pest in apple orchards. Three different types (I-III) of dominantly inherited field resistance of CM larvae to CpGV have been recently identified. In this study, transcription of virus genes in midgut cells of type II-resistant CM larvae infected with different CpGV isolates, i.e., CpGV-M and CpGV-S (both prone to type II resistance) as well as CpGV-E2 (breaking type II resistance) was determined by strand-specific RNA sequencing (RNA-Seq) at an early infection stage (72 h post infection). Based on principal component analysis of read counts and the quantitative distribution of single nucleotide polymorphisms (SNPs) in the RNA-Seq data, a bioinformatics analysis pipeline was developed for an a posteriori identification of the infective agents. We report that (i) identification of infective agent is crucial, especially in in vivo infection experiments, when activation of covert virus infections is a possibility, (ii) no substantial difference between CpGV-M and CpGV-S transcription was found in type II-resistant CM larvae despite a different resistance mechanism, (iii) the transcription level of CpGV-M and CpGV-S was much lower than that of CpGV-E2, and (iv) orf59 (sod), orf89 (pif-6), orf92 (p18), and orf137 (lef-10) were identified as significantly downregulated genes in resistance-prone isolates CpGV-M and CpGV-S. For type II resistance of CM larvae, we conclude that CpGV-M and CpGV-S are both able to enter midgut cells, but viral transcription is significantly impaired at an early stage of infection compared to the resistance-breaking isolate CpGV-E2. IMPORTANCE: CpGV is a highly virulent pathogen of codling moth, and it has been developed into one of the most successful commercial baculovirus biocontrol agents for pome fruit production worldwide. The emergence of field resistance in codling moth to commercial CpGV products is a threat toward the sustainable use of CpGV. In recent years, different types of resistance (type I-III) were identified. For type II resistance, very little is known regarding the infection process. By studying the virus gene expression patterns of different CpGV isolates in midguts of type II-resistant codling moth larvae, we found that the type II resistance mechanism is most likely based on intracellular factors rather than a receptor component. By applying SNP mapping of the RNA-Seq data, we further emphasize the importance of identifying the infective agents in in vivo experiments when activation of a covert infection cannot be excluded.


Assuntos
Perfilação da Expressão Gênica , Granulovirus , Larva , Mariposas , Polimorfismo de Nucleotídeo Único , Animais , Mariposas/virologia , Granulovirus/genética , Larva/virologia , Larva/genética , RNA-Seq , Controle Biológico de Vetores , Transcriptoma , Análise de Sequência de RNA
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372948

RESUMO

With the ever-increasing developing rate of gene and cellular therapy applications and growing accessibility due to products receiving regulatory approval, the need for effective and reliable safety mechanisms to prevent or eliminate potentially fatal side effects is of the utmost importance. In this study, we present the CRISPR-induced suicide switch (CRISISS) as a tool to eliminate genetically modified cells in an inducible and highly efficient manner by targeting Cas9 to highly repetitive Alu retrotransposons in the human genome, causing irreparable genomic fragmentation by the Cas9 nuclease and resulting cell death. The suicide switch components, including expression cassettes for a transcriptionally and post-translationally inducible Cas9 and an Alu-specific single-guide RNA, were integrated into the genome of target cells via Sleeping-Beauty-mediated transposition. The resulting transgenic cells did not show signs of any impact on overall fitness when uninduced, as unintended background expression, background DNA damage response and background cell killing were not observed. When induced, however, a strong expression of Cas9, a strong DNA damage response and a rapid halt of cell proliferation coupled with near complete cell death within four days post-induction were seen. With this proof-of-concept study, we present a novel and promising approach for a robust suicide switch with potential utility for gene and cell therapy in the future.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Animais Geneticamente Modificados
3.
Bioessays ; 42(11): e2000136, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939778

RESUMO

The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.


Assuntos
Elementos de DNA Transponíveis , Engenharia Genética , Humanos , Transposases/genética , Transposases/metabolismo
4.
Gene Ther ; 28(9): 560-571, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33846552

RESUMO

Clinical development of chimeric antigen receptor (CAR)-T-cell therapy has been enabled by advances in synthetic biology, genetic engineering, clinical-grade manufacturing, and complex logistics to distribute the drug product to treatment sites. A key ambition of the CARAMBA project is to provide clinical proof-of-concept for virus-free CAR gene transfer using advanced Sleeping Beauty (SB) transposon technology. SB transposition in CAR-T engineering is attractive due to the high rate of stable CAR gene transfer enabled by optimized hyperactive SB100X transposase and transposon combinations, encoded by mRNA and minicircle DNA, respectively, as preferred vector embodiments. This approach bears the potential to facilitate and expedite vector procurement, CAR-T manufacturing and distribution, and the promise to provide a safe, effective, and economically sustainable treatment. As an exemplary and novel target for SB-based CAR-T cells, the CARAMBA consortium has selected the SLAMF7 antigen in multiple myeloma. SLAMF7 CAR-T cells confer potent and consistent anti-myeloma activity in preclinical assays in vitro and in vivo. The CARAMBA clinical trial (Phase-I/IIA; EudraCT: 2019-001264-30) investigates the feasibility, safety, and anti-myeloma efficacy of autologous SLAMF7 CAR-T cells. CARAMBA is the first clinical trial with virus-free CAR-T cells in Europe, and the first clinical trial that uses advanced SB technology worldwide.


Assuntos
Mieloma Múltiplo , Terapia Genética , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Família de Moléculas de Sinalização da Ativação Linfocitária , Linfócitos T
5.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064900

RESUMO

Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Engenharia Genética , Vetores Genéticos , Genoma , Transposases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Humanos , Transposases/genética
6.
Artigo em Alemão | MEDLINE | ID: mdl-32995895

RESUMO

More than 250 million people worldwide suffer from chronic infection with hepatitis B virus (CHB). Chronic infection is associated with an increased risk of developing liver fibrosis/cirrhosis and hepatocellular carcinoma. Approximately 0.8-1 million people die annually as a result of CHB. One difficulty in the treatment of CHB is that the viral genome can persist for a very long time in the form of a minichromosome, and viral sequences can insert themselves into the host genome. Chronic infections are often characterized by functional defects of the cellular immune response, especially the T­cell response, which prevents the elimination of HBV-infected cells.Immunotherapies aiming to cure CHB therefore aim to restore the antiviral function of the cellular immune response. In this review, various current approaches to immunotherapy of CHB are described, in particular the use of genetically modified autologous T cells as a possible tool for therapy. Furthermore, the modulation of checkpoint inhibitors of the immune response, metabolic T cell therapies, and therapeutic vaccination to stimulate the T­cell response are summarized as immunotherapeutic strategies for treating CHB.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Alemanha , Hepatite B Crônica/terapia , Humanos , Imunoterapia , Linfócitos T
7.
Opt Express ; 22(1): 547-56, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24515015

RESUMO

X-ray imaging using a Talbot-Lau interferometer, consisting of three binary gratings, is a well-established approach to acquire x-ray phase-contrast and dark-field images with a polychromatic source. However, challenges in the production of high aspect ratio gratings limit the construction of a compact setup for high x-ray energies. In this study we consider the use of phase gratings with triangular-shaped structures in an x-ray interferometer and show that such gratings can yield high visibilities for significantly shorter propagation distances than conventional gratings with binary structures. The findings are supported by simulation and experimental results for both cases of a monochromatic and a polychromatic source.


Assuntos
Interferometria/instrumentação , Iluminação/instrumentação , Refratometria/instrumentação , Difração de Raios X/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos
8.
Methods Mol Biol ; 2521: 41-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732992

RESUMO

Human T lymphocytes that transgenically express a chimeric antigen receptor (CAR) have proven efficacy and safety in gene- and cell-based immunotherapy of certain hematological cancers. Appropriate gene vectors and methods of genetic engineering are required for therapeutic cell products to be biologically potent and their manufacturing to be economically viable. Transposon-based gene transfer satisfies these needs, and is currently being evaluated in clinical trials. In this protocol we describe the basic Sleeping Beauty (SB) transposon vector components required for stable gene integration in human cells, with special emphasis on minicircle DNA vectors and the use of synthetic mRNA. We provide a protocol for functional validation of the vector components in cultured human cell lines on the basis of fluorescent reporter gene expression. Finally, we provide a protocol for CAR-T cell engineering and describe assays that address transgene expression, biological potency and genomic vector copy numbers in polyclonal cell populations. Because transposons allow virus-free gene transfer with naked nucleic acids, the protocol can be adopted by any laboratory equipped with biological safety level S1 facilities.


Assuntos
Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Transposases/genética , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA