Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 469, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062461

RESUMO

Over the past years, the development of innovative smart wound dressings is revolutionizing wound care management and research. Specifically, in the treatment of diabetic foot wounds, three-dimensional (3D) bioprinted patches may enable personalized medicine therapies. In the present work, a methacrylated hyaluronic acid (MeHA) bioink is employed to manufacture 3D printed patches to deliver small extracellular vesicles (sEVs) obtained from human mesenchymal stem cells (MSC-sEVs). The production of sEVs is maximized culturing MSCs in bioreactor. A series of in vitro analyses are carried out to demonstrate the influence of MSC-sEVs on functions of dermal fibroblasts and endothelial cells, which are the primary functional cells in skin repair process. Results demonstrate that both cell populations are able to internalize MSC-sEVs and that the exposure to sEVs stimulates proliferation and migration. In vivo experiments in a well-established diabetic mouse model of pressure ulcer confirm the regenerative properties of MSC-sEVs. The MeHA patch enhances the effectiveness of sEVs by enabling controlled release of MSC-sEVs over 7 days, which improve wound epithelialization, angiogenesis and innervation. The overall findings highlight that MSC-sEVs loading in 3D printed biomaterials represents a powerful technique, which can improve the translational potential of parental stem cell in terms of regulatory and economic impact.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Animais , Camundongos , Humanos , Ácido Hialurônico , Células Endoteliais , Úlcera , Células-Tronco , Bandagens
2.
BMC Musculoskelet Disord ; 23(1): 1140, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581922

RESUMO

BACKGROUND: Autologous hamstrings and patellar tendon have historically been considered the gold standard grafts for anterior cruciate ligament reconstruction (ACLR). In the last decades, the utilization of synthetic grafts has re-emerged due to advantageous lack of donor site morbidity and more rapid return to sport. The Ligament Augmentation and Reconstruction System (LARS) has demonstrated to be a valid and safe option for ACLR in the short term. However, recent studies have pointed out the notable frequency of associated complications, including synovitis, mechanical failure, and even chondrolysis requiring joint replacement. CASE PRESENTATION: We report the case of a 23-year-old male who developed a serious foreign body reaction with wide osteolysis of both femoral and tibial tunnels following ACLR with LARS. During first-stage arthroscopy, we performed a debridement of the pseudocystic mass incorporating the anterior cruciate ligament (ACL) and extending towards the tunnels, which were filled with autologous anterior iliac crest bone graft chips. Histological analysis revealed the presence of chronic inflammation, fibrosis, and foreign body giant cells with synthetic fiber inclusions. Furthermore, physicochemical analysis showed signs of fiber depolymerization, increased crystallinity and formation of lipid peroxidation-derived aldehydes, which indicate mechanical aging and instability of the graft. After 8 months, revision surgery was performed and ACL revision surgery with autologous hamstrings was successfully carried out. CONCLUSIONS: The use of the LARS grafts for ACLR should be cautiously contemplated considering the high risk of complications and early failure.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Osteólise , Masculino , Humanos , Adulto Jovem , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Osteólise/diagnóstico por imagem , Osteólise/etiologia , Osteólise/cirurgia , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Ligamento Cruzado Anterior/cirurgia , Reação a Corpo Estranho/diagnóstico por imagem , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/cirurgia
3.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557882

RESUMO

Hybrid bone substitute made up of a 3D printed polyetheretherketone (PEEK) scaffold coated with methacrylated hyaluronic acid (MeHA)-hydroxyapatite (HAp) hydrogel is the objective of the present work. Development and characterization of the scaffold and of the MeHA-HAp after its infiltration and UV photocrosslinking have been followed by analyses of its biological properties using human mesenchymal stem cells (MSCs). Interconnected porous PEEK matrices were produced by fused deposition modeling (FDM) characterized by a reticular pattern with 0°/90° raster orientation and square pores. In parallel, a MeHA-HAp slurry has been synthesized and infiltrated in the PEEK scaffolds. The mechanical properties of the coated and pure PEEK scaffold have been evaluated, showing that the inclusion of MeHA-HAp into the lattice geometry did not significantly change the strength of the PEEK structure with Young's modulus of 1034.9 ± 126.1 MPa and 1020.0 ± 63.7 MPa for PEEK and PEEK-MeHA-HAp scaffolds, respectively. Human MSCs were seeded on bare and coated scaffolds and cultured for up to 28 days to determine the adhesion, proliferation, migration and osteogenic differentiation. In vitro results showed that the MeHA-HAp coating promotes MSCs adhesion and proliferation and contributes to osteogenic differentiation and extracellular matrix mineralization. This study provides an efficient solution for the development of a scaffold combining the great mechanical performances of PEEK with the bioactive properties of MeHA and HAp, having high potential for translational clinical applications.


Assuntos
Ácido Hialurônico , Osteogênese , Humanos , Ácido Hialurônico/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Regeneração Óssea , Cetonas/farmacologia , Cetonas/química , Durapatita/farmacologia , Durapatita/química , Impressão Tridimensional , Alicerces Teciduais/química
4.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360979

RESUMO

Bone cancer is a demanding challenge for contemporary medicine due to its high frequency of presentation and significant heterogeneity of malignant lesions developing within the bone. To date, available treatments are rarely curative and are primarily aimed at prolonging patients' survival and ameliorating their quality of life. Furthermore, both pharmacological and surgical therapies are aggravated by a consistent burden of adverse events and subsequent disability due to the loss of healthy bone structural and functional properties. Therefore, great research efforts are being made to develop innovative biomaterials able to selectively inhibit bone cancer progression while reducing the loss of bone structural properties secondary to local tissue invasion. In this review, we describe the state of the art of innovative biomaterials for the treatment of bone cancer. Along with physiological bone remodeling, the development of bone metastasis and osteosarcoma will be depicted. Subsequently, recent advances on nanocarrier-based drug delivery systems, as well as the application of novel, multifunctional biomaterials for the treatment of bone cancer will be discussed. Eventually, actual limitations and promising future perspectives regarding the employment of such approaches in the clinical scenario will be debated.


Assuntos
Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Regeneração Óssea , Humanos
5.
J Mater Sci Mater Med ; 29(5): 62, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736686

RESUMO

The present work is focused on the design of a bioactive chitosan-based scaffold functionalized with organic and inorganic signals to provide the biochemical cues for promoting stem cell osteogenic commitment. The first approach is based on the use of a sequence of 20 amino acids corresponding to a 68-87 sequence in knuckle epitope of BMP-2 that was coupled covalently to the carboxyl group of chitosan scaffold. Meanwhile, the second approach is based on the biomimetic treatment, which allows the formation of hydroxyapatite nuclei on the scaffold surface. Both scaffolds bioactivated with organic and inorganic signals induce higher expression of an early marker of osteogenic differentiation (ALP) than the neat scaffolds after 3 days of cell culture. However, scaffolds decorated with BMP-mimicking peptide show higher values of ALP than the biomineralized one. Nevertheless, the biomineralized scaffolds showed better cellular behaviour than neat scaffolds, demonstrating the good effect of hydroxyapatite deposits on hMSC osteogenic differentiation. At long incubation time no significant difference among the biomineralized and BMP-activated scaffolds was observed. Furthermore, the highest level of Osteocalcin expression (OCN) was observed for scaffold with BMP2 mimic-peptide at day 21. The overall results showed that the presence of bioactive signals on the scaffold surface allows an osteoinductive effect on hMSC in a basal medium, making the modified chitosan scaffolds a promising candidate for bone tissue regeneration.


Assuntos
Osso e Ossos/citologia , Quitosana/química , Materiais Revestidos Biocompatíveis , Compostos Inorgânicos/química , Compostos Orgânicos/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
6.
Angew Chem Int Ed Engl ; 57(25): 7380-7384, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29663606

RESUMO

The photodegradation kinetics of 2-mercaptobenzothiazole (MBT), a corrosion inhibitor for copper-based alloys, is studied in high amorphous polyvinyl alcohol coatings subjected to either UV irradiation or indoor light exposure. The photodegradation process proceeds rapidly, thus compromising the anticorrosion ability of the coating. The encapsulation of MBT into layered double hydroxide (LDH) nanocarriers slows down its decomposition kinetics by a factor of three. Besides preserving the corrosion inhibitor, such a strategy allows a controlled release of MBT triggered by corrosion-related stimuli, for example, presence of chloride species and acid pH. The developed coating guarantees long-lasting corrosion protection even at low amounts of inhibitor-loaded LDH nanocarriers (ca. 5 wt %). This also reflects in a high transparency, which makes the protective coating suitable for demanding applications, such as the conservation of high-value metal works of art.

7.
Nanotechnology ; 28(50): 505103, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058684

RESUMO

The main limitation of conventional antibiotic therapies concerns the low efficacy to fight bacteria attacks during long treatment times. In this context, the integrated use of electrofluidodynamics (EFDs)-basically electrospinning and electrospraying-may represent an interesting route for designing nanostructured platforms with controlled release to prevent the formation of bacterial biofilms in oral implant sites. They allow for the deposition of nanofibres and nanoparticles by different modes-i.e. sequential, simultaneous-for the fabrication of more efficacious systems in terms of degradation protection, pharmacokinetic control and drug distribution to the surrounding tissues. Herein, we will investigate EFDs processing modes and conditions to decorate polycaprolactone nanofibres surfaces by chitosan nano-reservoirs for the administration of Amoxicillin Trihydrate as an innovative antibacterial treatment of the periodontal pocket.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Quitosana/química , Portadores de Fármacos , Poliésteres/química , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/crescimento & desenvolvimento , Amoxicilina/metabolismo , Antibacterianos/metabolismo , Preparações de Ação Retardada/síntese química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Cinética , Testes de Sensibilidade Microbiana , Nanofibras/química , Nanofibras/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
8.
J Mater Sci Mater Med ; 27(6): 109, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27138966

RESUMO

The aim of this work was to synthesize semi-interpenetrating polymer networks (semi-IPNs) by free radical polymerization of N-isopropylacrylamide [poly (NIPAAm)], in the presence of chitosan (CHI), and to study the effect of pH and temperature changes on their rheological and swelling properties. The semi-IPNs are thermally stable up to about 400 °C and the presence of CHI increases the thermal degradation rate compared to bare poly (NIPAAm). The prepared systems presents a well-defined porosity and proved to be non-toxic, in vitro, on human embryonic skin fibroblast, thus offering appropriate support for cell proliferation. The semi-IPNs present, at physiological pH, swelling degrees well below those of the pure poly (NIPAAm). Differently, at acidic pH, the CHI macromolecules are protonated and become much more permeable to the diffusion of water giving a swelling degree that approaches that of bare poly (NIPAAm). The viscoelastic moduli of the semi-IPNs increase as a function of pH while the LCST remain unchanged. Moreover, the semi-IPNs viscoelastic moduli increase with the increase of CHI content and, in particular, the difference between the elastic modulus before and after the sol/gel transition is higher for the semi-IPN than for bare poly (NIPAAm) just at about physiological conditions.


Assuntos
Resinas Acrílicas/química , Quitosana/química , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Reologia , Pele/citologia , Temperatura
9.
J Mater Sci Mater Med ; 27(10): 153, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27585912

RESUMO

The integration of inorganic nanoparticles into polymer matrices allows for the modification of physical properties as well as the implementation of new features for unexplored application fields. Here, we propose the study of a new metal/polymer nanocomposite fabricated by dispersing pure Ti nanoparticles into a poly(methylmetacrilate) matrix via solvent casting process, to investigate its potential use as new biomaterial for biomedical applications. We demonstrated that Ti nanoparticles embedded in the poly(methylmetacrilate) matrix can act as reinforcing agent, not negatively influencing the biological response of human mesenchymal stem cell in terms of cytotoxicity and cell viability. As a function of relative amount and surface treatment, Ti nanoparticles may enhance mechanical strength of the composite-ranging from 31.1 ± 2.5 to 43.7 ± 0.7 MPa-also contributing to biological response in terms of adhesion and proliferation mechanisms. In particular, for 1 wt% Ti, treated Ti nanoparticles improve cell materials recognition, as confirmed by higher cell spreading-quantified in terms of cell area via image analysis-locally promoting stronger interactions at cell matrix interface. At this stage, these preliminary results suggest a promising use of pure Ti nanoparticles as filler in polymer composites for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Polímeros/química , Polimetil Metacrilato/química , Titânio/química , Adsorção , Adesão Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Processamento de Imagem Assistida por Computador , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nitrogênio/química , Oxigênio/química , Pressão , Solventes/química , Estresse Mecânico , Propriedades de Superfície , Temperatura
10.
Biomacromolecules ; 16(7): 1873-85, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26082968

RESUMO

The interest in nanotechnology and the growing concern for the antibiotic resistance demonstrated by many microorganisms have recently stimulated many efforts in designing innovative biomaterials and substrates with antibacterial properties. Among the implemented strategies to control the incidence of infections associated with the use of biomedical device and implants, interesting routes are represented by the incorporation of bactericidal agents onto the surface of biomaterials for the prevention of bacterial adhesion and biofilm growth. Natural products and particularly bioactive metals such as silver, copper and zinc represent an interesting alternative for the development of advanced biomaterials with antimicrobial properties. This review presents an overview of recent progress in the modification of biomaterials as well as the most attractive techniques for the deposition of antimicrobial coatings on different substrates for biomedical application. Moreover, some research activities and results achieved by the authors in the development of antibacterial materials are also presented and discussed.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Metais Pesados/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Cobre/farmacologia , Nanotecnologia , Prata/farmacologia , Propriedades de Superfície , Zinco/farmacologia
11.
J Mater Sci Mater Med ; 26(2): 90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25649515

RESUMO

In the present study, strontium-modified hydroxyapatite gels (Sr-HA) at different concentrations were prepared using sol-gel approach and their effect on human-bone-marrow-derived mesenchymal stem cells, were evaluated. The effect of Strontium on physico-chemical and morphological properties of hydroxyapatite gel were evaluated. Morphological analyses (SEM and TEM) demonstrate that an increasing in the amount of Sr ions doped into HA made the agglomerated particles smaller. The substitution of large Sr2+ for small Ca2+ lead to denser atomic packing of the system causing retardation of crystals growth. The biological results demonstrated that hydroxyapatite gel containing from 0 to 20 mol% of Sr presented no cytotoxicity and promote the expression of osteogenesis related genes including an early marker for osteogenic differentiation ALP; a non-collagen protein OPN and a late marker for osteogenic differentiation OCN. Finally, the Sr-HA gels could have a great potential application as filler in bone repair and regeneration and used in especially in the osteoporotic disease.


Assuntos
Materiais Biocompatíveis , Hidroxiapatitas , Células-Tronco Mesenquimais/citologia , Osteogênese , Estrôncio , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Géis , Expressão Gênica , Humanos , Hidroxiapatitas/síntese química , Hidroxiapatitas/química , Hidroxiapatitas/toxicidade , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Osteocalcina/metabolismo , Osteogênese/genética , Osteopontina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio/química , Estrôncio/toxicidade
12.
J Mater Sci Mater Med ; 26(10): 250, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26420041

RESUMO

Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.


Assuntos
Nanopartículas de Magnetita/química , Nanocompostos/química , Alicerces Teciduais/química , Fenômenos Biomecânicos , Células Cultivadas , Força Compressiva , Humanos , Imageamento Tridimensional , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Microtomografia por Raio-X
13.
Int Immunol ; 25(12): 703-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038600

RESUMO

In humans, the thymus is the primary lymphoid organ able to support the development of T cells through its three-dimensional (3D) organization of the thymic stromal cells. Since a remarkable number of similarities are shared between the thymic epithelial cells (TECs) and skin-derived keratinocytes and fibroblasts, in this study we used human keratinocytes seeded with fibroblasts on the 3D poly ε-caprolactone scaffold to evaluate their ability to replace TECs in supporting T-cell differentiation from human haematopoietic stem cells (HSCs). We observed that in the multicellular biocomposite, early thymocytes expressing CD7(+)CD1a(+), peculiar markers of an initial T-cell commitment, were de novo generated. Molecular studies of genes selectively expressed during T-cell development revealed that TAL1 was down-regulated and Spi-B was up-regulated in the cell suspension, consistently with a T-cell lineage commitment. Moreover, PTCRA and RAG2 expression was detected, indicative of a recombinant activity, required for the generation of a T-cell receptor repertoire. Our results indicate that in the multicellular biocomposite, containing skin-derived elements in the absence of thymic stroma, HSCs do start differentiating toward a T-cell lineage commitment. In conclusion, the construct described in this study exerts some properties of a lymphoid organoid, suitable for future clinical applications in cell-based therapies.


Assuntos
Caproatos , Diferenciação Celular , Fibroblastos/fisiologia , Células-Tronco Hematopoéticas/citologia , Queratinócitos/fisiologia , Lactonas , Células Precursoras de Linfócitos T/citologia , Alicerces Teciduais , Caproatos/química , Comunicação Celular , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Células Epidérmicas , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Queratinócitos/ultraestrutura , Lactonas/química , Leucócitos Mononucleares/fisiologia , Fenótipo , Porosidade , Células Precursoras de Linfócitos T/metabolismo , Timo/citologia , Timo/fisiologia , Alicerces Teciduais/química
14.
J Mater Sci Mater Med ; 25(2): 383-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24218298

RESUMO

Polymer chain entanglements in organic solvents can be considered a key parameter in the formation of non-spherical beads when electrospraying is employed. The shape of micro/nanometric drug delivery systems plays a major role since it can affect circulation, extravasation, distribution and in vivo clearance of the devices. In this frame, we investigated the influence of polymer processing parameters on the design of polylactic-co-glycolic acid non-spherical microdevices loaded with triamcinolone acetonide (TrA), a sparingly water soluble corticosteroid, prepared by electrospraying technique through a one-step process. In particular, we verified that the formation of non-spherical MDs is related to the presence of entanglements among polymer chains to select the optimal solution to be sprayed. The addition of TrA did not substantially affect the particle morphology in terms of size, size distribution and circularity at all the tested drug loadings. Furthermore, the drug could be released for a prolonged period, with controlled and reproducible kinetics for over 3 weeks. The mathematical modeling of release profiles highlighted that the release is mainly driven by degradation, at a higher extent in the case of low drug loading.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Ácido Láctico/química , Ácido Poliglicólico/química , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
15.
J Mater Sci Mater Med ; 25(10): 2323-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24737088

RESUMO

Complex architecture of natural tissues such as nerves requires the use of multifunctional scaffolds with peculiar topological and biochemical signals able to address cell behavior towards specific events at the cellular (microscale) and macromolecular (nanoscale) level. In this context, the electrospinning technique is useful to generate fiber assemblies having peculiar fiber diameters at the nanoscale and patterned by unidirectional ways, to facilitate neurite extension via contact guidance. Following a bio-mimetic approach, fully aligned polycaprolactone fibers blended with gelatin macromolecules have been fabricated as potential bioactive substrate for nerve regeneration. Morphological and topographic aspects of electrospun fibers assessed by SEM/AFM microscopy supported by image analyses elaboration allow estimating an increase of fully aligned fibers from 5 to 39% as collector rotating rate increases from 1,000 to 3,000 rpm. We verify that fully alignment of fibers positively influences in vitro response of hMSC and PC-12 cells in neurogenic way. Immunostaining images show that the presence of topological defects, i.e., kinks--due to more frequent fiber crossing--in the case of randomly organized fiber assembly concurs to interfere with proper neurite outgrowth. On the contrary, fully aligned fibers without kinks offer a more efficient contact guidance to direct the orientation of nerve cells along the fibers respect to randomly organized ones, promoting a high elongation of neurites at 7 days and the formation of bipolar extensions. So, this confirms that the topological cue of fully alignment of fibers elicits a favorable environment for nerve regeneration.


Assuntos
Regeneração Tecidual Guiada , Nanofibras/química , Regeneração Nervosa , Animais , Calibragem , Diferenciação Celular/efeitos dos fármacos , Galvanoplastia/métodos , Gelatina/química , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Humanos , Teste de Materiais , Nanofibras/normas , Nanofibras/toxicidade , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Poliésteres/química , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais , Células Tumorais Cultivadas
17.
Bioact Mater ; 35: 99-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38283385

RESUMO

Recently, the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ. This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant (Pluronic F127), bioactive glass (BG), and black phosphorus (BP). The nanocomposite was prepared through a two-step synthetic strategy, including a microwave treatment that turned BP nanosheets (BPNS) into quantum dots (BPQDs) with 5 ± 2 nm dimensions in situ. The effects of surfactant and microwave treatment were assessed in vitro: the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite. The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid. The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro, finding that 150 µg mL-1 was the lowest concentration which prevented the proliferation of SAOS-2 cells, while the counterpart without BP did not affect the cell growth rate. Moreover, the apoptosis pathways were evaluated and a mechanism of action was proposed. NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia. The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer, breast cancer, and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers. The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells; the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells. This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.

18.
Pharmaceutics ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794304

RESUMO

In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.

19.
ScientificWorldJournal ; 2013: 270260, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459423

RESUMO

Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS) neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs), to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs) that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanocompostos/química , Doenças Neurodegenerativas/terapia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Elasticidade , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Doenças Neurodegenerativas/patologia
20.
Adv Mater ; 35(41): e2302858, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259776

RESUMO

The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.


Assuntos
Materiais Biocompatíveis , Fotoquimioterapia , Materiais Biocompatíveis/química , Cerâmica/uso terapêutico , Cerâmica/química , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA