Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37522404

RESUMO

In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi-Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.

2.
J Am Chem Soc ; 144(8): 3398-3410, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174711

RESUMO

Simple arguments based on orbital energies and crystal symmetry suggest the band gap of CsTaS3 to be suitable for solar cell photovoltaics. Here, we combine chemical theory with sophisticated calculations to describe an intricate relationship between the structure and optical properties of this material. Orbital interactions govern both the presence and nature of CsTaS3's gap. In the first place, through a second-order Jahn-Teller (JT) distortion, which slides the Ta ion along the axial direction of TaS3 chains. This displacement creates a gap that remains direct in the face of minor distortions. Using an advanced methodology, compressive sensing lattice dynamics, we compute the anharmonic interatomic force constants up to the fourth order and use them to renormalize the phonons at finite temperatures. This analysis predicts CsTaS3 to undergo the JT metal-to-semiconductor transition at temperatures below 1000 K. At around room temperature, we find a second distortion that moves the Ta ion along the equatorial direction of the TaS3 chains, giving rise to many possible supercell conformations. By relaxing all symmetry-inequivalent structures with Ta ion displacements, in supercells with up to 12 formula units, we obtain 204 symmetrically distinct conformations and sort them by energy and (direct) band gap magnitude. Since all structures with a gap lie within an energy range of 30 meV/Ta above the ground state, we expect CsTaS3's optical properties to be controlled by the full polymorphic ensemble of gapped conformations. Using the GW-Bethe-Salpeter approach, we predict a band gap of 1.3-1.4 eV as well as potent absorption in the visible range.

3.
J Chem Phys ; 149(12): 124106, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278670

RESUMO

Current machine-learning methods to reproduce ab initio potential energy landscapes suffer from an unfavorable computational scaling with respect to the number of chemical species. In this work, we propose a new approach by using optimized symmetry functions to explore similarities of structures in multicomponent systems in order to yield linear complexity. We combine these symmetry functions with the charge equilibration via neural network technique, a reliable artificial neural network potential for ionic materials, and apply this method to study alkali-halide materials MX with 6 chemical species (M = {Li, Na, K} and X = {F, Cl, Br}). Our results show that our approach provides good agreement both with experimental and DFT reference data of many physical and structural properties for any chemical combination.

4.
Phys Rev Lett ; 117(4): 046602, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494488

RESUMO

Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

5.
J Chem Phys ; 144(3): 034203, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26801027

RESUMO

Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. The new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.

6.
Angew Chem Int Ed Engl ; 55(43): 13446-13449, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27666749

RESUMO

A new intermetallic compound, the first to be structurally identified in the Cu-Bi binary system, is reported. This compound is accessed by high-pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu11 Bi7 is a unique variation of the NiAs structure type. Temperature-dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at Tc =1.36 K. Density functional theory calculations further demonstrate that Cu11 Bi7 can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight the ability of high-pressure syntheses to allow for inroads into heretofore-undiscovered intermetallic systems for which no thermodynamically stable binaries are known.

7.
J Chem Phys ; 142(2): 024710, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591380

RESUMO

Intermetallic Li-Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li-Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li-Al stable compounds as a function of their stoichiometry.

8.
Phys Rev Lett ; 112(19): 199801, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877972

RESUMO

A Comment on the Letter by H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, [Phys. Rev. Lett. 110, 118702 (2013).


Assuntos
Silício/química , Cristalização/métodos
9.
J Chem Phys ; 140(21): 214102, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24907985

RESUMO

The Minima Hopping global optimization method uses physically realizable molecular dynamics moves in combination with an energy feedback that guarantees the escape from any potential energy funnel. For the purpose of finding reaction pathways, we argue that Minima Hopping is particularly suitable as a guide through the potential energy landscape and as a generator for pairs of minima that can be used as input structures for methods capable of finding transition states between two minima. For Lennard-Jones benchmark systems we compared this Minima Hopping guided path search method to a known approach for the exploration of potential energy landscapes that is based on deterministic mode-following. Although we used a stabilized mode-following technique that reliably allows to follow distinct directions when escaping from a local minimum, we observed that Minima Hopping guided path search is far superior in finding lowest-barrier reaction pathways. We, therefore, suggest that Minima Hopping guided path search can be used as a simple and efficient way to identify energetically low-lying chemical reaction pathways. Finally, we applied the Minima Hopping guided path search approach to 75-atom and 102-atom Lennard-Jones systems. For the 75-atom system we found pathways whose highest energies are significantly lower than the highest energy along the previously published lowest-barrier pathway. Furthermore, many of these pathways contain a smaller number of intermediate transition states than the previously publish lowest-barrier pathway. In case of the 102-atom system Minima Hopping guided path search found a previously unknown and energetically low-lying funnel.

10.
J Chem Phys ; 140(12): 124708, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697471

RESUMO

According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH4)4 crystallizes in the crystallographic space group Cmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on ab initio calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C2221 symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.9-8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH4)4.

11.
Phys Rev Lett ; 111(13): 136101, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116795

RESUMO

Systematic ab initio structure prediction was applied for the first time to predict low energy surface reconstructions by employing the minima hopping method on the α-boron (111) surface. Novel reconstruction geometries were identified and carefully characterized in terms of structural and electronic properties. Our calculations predict the formation of a planar, monolayer sheet at the surface, which is responsible for conductive surface states. Furthermore, the isolated boron sheet is shown to be the ground state 2D structure in vacuum at a hole density of η=1/5 and is therefore a potential candidate as a precursor for boron nanostructures.

12.
Phys Rev Lett ; 110(13): 135502, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581335

RESUMO

Low-energy structures of alanates are currently known to be described by patterns of isolated, nearly ideal tetrahedral [AlH4] anions and metal cations. We discover that the novel polymeric motif recently proposed for LiAlH4 plays a dominant role in a series of alanates, including LiAlH4, NaAlH4, KAlH4, Mg(AlH4)2, Ca(AlH4)2, and Sr(AlH4)2. In particular, most of the low-energy structures discovered for the whole series are characterized by networks of corner-sharing [AlH6] octahedra, forming wires and/or planes throughout the materials. Finally, for Mg(AlH4)2 and Sr(AlH4)2, we identify two polymeric phases to be lowest in energy at low temperatures.

13.
Phys Rev Lett ; 108(11): 117004, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540502

RESUMO

A systematic ab initio search for low-enthalpy phases of disilane (Si2H6) at high pressures was performed based on the minima hopping method. We found a novel metallic phase of disilane with Cmcm symmetry, which is enthalpically more favorable than the recently proposed structures of disilane up to 280 GPa, but revealing compositional instability below 190 GPa. The Cmcm phase has a moderate electron-phonon coupling yielding a superconducting transition temperature T(c) of around 20 K at 100 GPa, decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted T(c))s for disilane at equivalent pressure. This shows that similar but different crystalline structures of a material can result in dramatically different T(c)'s and stresses the need for a systematic search for a crystalline ground state.

14.
Phys Rev Lett ; 108(20): 205505, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003156

RESUMO

We identify a class of novel low energy phases of the hydrogen storage material LiAlH4 by using the ab initio minima hopping crystal structure prediction method. These phases are, unlike previous predictions and known structures of similar materials, characterized by polymeric networks consisting of Al atoms interlinked with H atoms. The most stable structure is a layered ionic crystal with P21/c symmetry, and it has lower free energy than the previously reported structure over a wide range of temperatures. Furthermore, we carry out x-ray diffraction, phonon, and GW band-structure analysis in order to characterize this phase. Its experimental synthesis would have profound implications for the study of dehydrogenation and rehydrogenation processes and the stability problem of LiAlH4 for hydrogen storage applications.

15.
Phys Rev Lett ; 108(6): 065501, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401083

RESUMO

Through a systematic structural search we found an allotrope of carbon with Cmmm symmetry which we predict to be more stable than graphite for pressures above 10 GPa. This material, which we refer to as Z-carbon, is formed by pure sp(3) bonds and it provides an explanation to several features in experimental x-ray diffraction and Raman spectra of graphite under pressure. The transition from graphite to Z-carbon can occur through simple sliding and buckling of graphene sheets. Our calculations predict that Z-carbon is a transparent wide band-gap semiconductor with a hardness comparable to diamond.

16.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544070

RESUMO

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

17.
Phys Rev Lett ; 106(22): 225502, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21702613

RESUMO

Using the minima hopping global geometry optimization method on the density functional potential energy surface we show that the energy landscape of boron clusters is glasslike. Larger boron clusters have many structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found. We thus present a methodology which can make predictions on the feasibility of the synthesis of new nanostructures.

18.
Sci Adv ; 7(51): eabg4930, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919429

RESUMO

Autonomous experimentation enabled by artificial intelligence offers a new paradigm for accelerating scientific discovery. Nonequilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery. We demonstrate accelerated exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis using lateral gradient laser spike annealing and optical characterization along with a hierarchy of AI methods to map out processing phase diagrams. Efficient exploration of the multidimensional parameter space is achieved with nested active learning cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments and end-to-end uncertainty quantification. We demonstrate SARA's performance by autonomously mapping synthesis phase boundaries for the Bi2O3 system, leading to orders-of-magnitude acceleration in the establishment of a synthesis phase diagram that includes conditions for stabilizing δ-Bi2O3 at room temperature, a critical development for electrochemical technologies.

19.
J Chem Phys ; 133(22): 224104, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21171680

RESUMO

A structure prediction method is presented based on the minima hopping method. To escape local minima, moves on the configurational enthalpy surface are performed by variable cell shape molecular dynamics. To optimize the escape steps the initial atomic and cell velocities are aligned to low curvature directions of the current local minimum. The method is applied to both silicon crystals and well-studied binary Lennard-Jones mixtures. For the latter new putative ground state structures are presented. It is shown that a high success rate is achieved and a reliable prediction of unknown ground state structures is possible.


Assuntos
Algoritmos , Modelos Moleculares , Silício/química , Simulação por Computador , Estrutura Molecular , Termodinâmica
20.
ACS Comb Sci ; 22(12): 887-894, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33118818

RESUMO

Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization methods are limited by speed, cost, availability, and/or resolution. To make efficient use of these methods, there is value in developing approaches for identifying critical compositions and conditions to be used as a priori knowledge for follow-up characterization with high-precision techniques, such as micrometer-scale synchrotron-based X-ray diffraction (XRD). Here, we demonstrate the use of optical microscopy and reflectance spectroscopy to identify likely phase-change boundaries in thin film libraries. These methods are used to delineate possible metastable phase boundaries following lateral-gradient laser spike annealing (lg-LSA) of oxide materials. The set of boundaries are then compared with definitive determinations of structural transformations obtained using high-resolution XRD. We demonstrate that the optical methods detect more than 95% of the structural transformations in a composition-gradient La-Mn-O library and a Ga2O3 sample, both subject to an extensive set of lg-LSA anneals. Our results provide quantitative support for the value of optically detected transformations as a priori data to guide subsequent structural characterization, ultimately accelerating and enhancing the efficient implementation of micrometer-resolution XRD experiments.


Assuntos
Óxidos/química , Teste de Materiais , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA