RESUMO
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Assuntos
Alcaloides , Claviceps , Epichloe , Alcaloides de Claviceps , Seleção Genética , Alcaloides/química , Alcaloides/classificação , Alcaloides/genética , Alcaloides/metabolismo , Claviceps/genética , Claviceps/metabolismo , Claviceps/patogenicidade , Epichloe/genética , Epichloe/metabolismo , Epichloe/patogenicidade , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Regulação Fúngica da Expressão Gênica , Hypocreales/genética , Hypocreales/metabolismo , Neotyphodium , Poaceae/genética , Poaceae/metabolismo , Poaceae/parasitologia , Simbiose/genéticaRESUMO
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
Assuntos
Adaptação Fisiológica/genética , Genoma Fúngico/fisiologia , Nicotiana/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Verticillium/genética , Verticillium/patogenicidade , Genômica , Nicotiana/genéticaRESUMO
BACKGROUND: Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs) have contributed to the generation of four lineage-specific (LS) regions in VdLs.17. RESULTS: We present here a detailed analysis of Class I retrotransposons and Class II "cut-and-paste" DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the "cut-and-paste" superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP) only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective "cut-and-paste" TEs were found in VaMs.102. CONCLUSIONS: Copia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and "cut-and-paste" transposons still potentially active. Some of these elements have undergone diversification and subsequent selective amplification after introgression into the fungal genome. Others, such as the ripped Copias, have been potentially acquired by horizontal transfer. The observed biased TE insertion in gene-rich regions within an individual genome (VdLs.17) and the "patchy" distribution among different strains point to the mobile elements as major generators of Verticillium intra- and inter-specific genomic variation.
Assuntos
Elementos de DNA Transponíveis/genética , Genoma Fúngico , Verticillium/genética , Biologia Computacional , Evolução Molecular , Ligação Genética , Fases de Leitura Aberta , Filogenia , Retroelementos/genética , Verticillium/classificaçãoRESUMO
The vascular wilt fungus Verticillium dahliae produces persistent resting structures, known as microsclerotia, which are important for this plant pathogen's long-term survival. Previously, we identified a hydrophobin gene (VDH1) that is necessary for microsclerotial production. The current study of VDH1's expression, and its regulation, was undertaken to provide insight into the largely uncharacterized molecular mechanisms relevant to microsclerotial development. Reporter gene analysis showed that VDH1 is specifically expressed in developing microsclerotia, as well as in hyphal fusions and conidiophores, suggesting that VDH1 mediates the development of microsclerotia from conidiophores and other hyphal structures. We report also on the effects of nutrient availability on the regulation of microsclerotial development in V. dahliae; the gene's activity appears to be regulated in response to carbon availability. Lastly, constitutive expression of VDH1 results in delayed disease symptom development, but has no noticeable effect on in vitro microsclerotial development.
Assuntos
Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Verticillium/crescimento & desenvolvimento , Verticillium/fisiologia , Carbono/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Genes Reporter , Hifas/genética , Esporos Fúngicos/genéticaRESUMO
Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Assuntos
Colletotrichum/crescimento & desenvolvimento , Colletotrichum/genética , Colletotrichum/patogenicidade , Genoma Fúngico , Arabidopsis/microbiologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Interações Hospedeiro-Patógeno/genética , Fungos Mitospóricos/genética , Fungos Mitospóricos/crescimento & desenvolvimento , Fungos Mitospóricos/patogenicidade , Modelos Biológicos , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Transcriptoma/genéticaRESUMO
The colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V. dahliae in olive tissues. Olive plants were bacterized with PICF7 and then transferred to V. dahliae-infested soil. Monitoring olive colonization events by V. dahliae and its interaction with PICF7 was conducted using a non-gnotobiotic system, confocal laser scanner microscopy and tissue vibratoming sections. A yellow fluorescently tagged V. dahliae derivative (VDAT-36I) was obtained by Agrobacterium tumefaciens-mediated transformation. Isolate VDAT-36I quickly colonized olive root surface, successfully invaded root cortex and vascular tissues via macro- and micro-breakages, and progressed to the aerial parts of the plant through xylem vessel cells. Strain PICF7 used root hairs as preferred penetration site, and once established on/in root tissues, hindered pathogen colonization. For the first time using this approach, the entire colonization process of a woody plant by V. dahliae is reported. Early and localized root surface and root endophytic colonization by P. fluorescens PICF7 is needed to impair full progress of verticillium wilt epidemics in olive.