Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 73(5): 1015-1027.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30711376

RESUMO

TCRs recognize cognate pMHCs to initiate T cell signaling and adaptive immunity. Mechanical force strengthens TCR-pMHC interactions to elicit agonist-specific catch bonds to trigger TCR signaling, but the underlying dynamic structural mechanism is unclear. We combined steered molecular dynamics (SMD) simulation, single-molecule biophysical approaches, and functional assays to collectively demonstrate that mechanical force induces conformational changes in pMHCs to enhance pre-existing contacts and activates new interactions at the TCR-pMHC binding interface to resist bond dissociation under force, resulting in TCR-pMHC catch bonds and T cell activation. Intriguingly, cancer-associated somatic mutations in HLA-A2 that may restrict these conformational changes suppressed TCR-pMHC catch bonds. Structural analysis also indicated that HLA polymorphism might alter the equilibrium of these conformational changes. Our findings not only reveal critical roles of force-induced conformational changes in pMHCs for activating TCR-pMHC catch bonds but also have implications for T cell-based immunotherapy.


Assuntos
Imunidade Adaptativa , Antígeno HLA-A2/imunologia , Mecanotransdução Celular , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Células HEK293 , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Hibridomas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Imagem Individual de Molécula/métodos , Relação Estrutura-Atividade , Linfócitos T/metabolismo
2.
EMBO J ; 41(2): e107739, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34913508

RESUMO

Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK/química , Sítios de Ligação , Células Cultivadas , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células K562 , Ligantes , Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligação Proteica , Imagem Individual de Molécula
3.
Nano Lett ; 20(7): 5133-5140, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530632

RESUMO

Immune checkpoint blockade with monoclonal antibodies (mAbs) that target programmed cell death protein-1 (PD-1) has remarkably revolutionized cancer therapy. Their binding kinetics measured by surface plasmon resonance does not always correlate well with their immunotherapeutic efficacies, mainly due to the lack of two-dimensional cell plasma membrane and the capability of force sensing and manipulation. In this regard, based on a more suitable and ultra-sensitive biomechanical nanotool, biomembrane force probe (BFP), we developed a Double-edge Smart Feedback control system as an ultra-stable platform to characterize ultra-long bond lifetimes of receptor-ligand binding on living cells. We further benchmarked the dissociation kinetics for three clinically approved PD-1 blockade mAbs (Nivolumab, Pembrolizumab, and Camrelizumab), intriguingly correlating well with the objective response rates in the hepatocellular carcinoma second-line treatment. This ultra-stable BFP potentially provides a compelling kinetic platform to direct the screening, optimization, and clinical selection of therapeutic antibodies in the future.


Assuntos
Antineoplásicos Imunológicos , Receptor de Morte Celular Programada 1 , Anticorpos Monoclonais , Antineoplásicos Imunológicos/farmacologia , Cinética , Nivolumabe
4.
J Mol Biol ; 435(1): 167800, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007627

RESUMO

Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.


Assuntos
Receptores Imunológicos , Imagem Individual de Molécula , Internalização do Vírus , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Receptores Imunológicos/química , Microscopia de Força Atômica , Imunidade
5.
Bio Protoc ; 12(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36353715

RESUMO

The transmembrane receptor-ligand interactions play a vital role in the physiological and pathological processes of living cells, such as immune cell activation, neural synapse formation, or viral invasion into host cells. Mounting evidence suggests that these processes involve mechanosensing and mechanotransduction, which are directly mediated by the force-dependent transmembrane receptor-ligand interactions. Some single-molecule force spectroscopy techniques have been applied to investigate force-dependent kinetics of receptor-ligand interactions. Among these, the biomembrane force probe (BFP), a unique and powerful technique, can quantitatively and accurately determine the force-dependent parameters of transmembrane receptor-ligand interactions at the single-molecule level on living cells. The stiffness, spatial resolution, force, and bond lifetime range of BFP are 0.1-3 pN/nm, 2-3 nm, 1-10 3 pN, and 5 × 10 -4 -200 s, respectively. Therefore, this technique is very suitable for studying transient and weak interactions between transmembrane receptors and their ligands. Here, we share in detail the in situ characterization of the single-molecule force-dependent bond lifetime of transmembrane receptor-ligand interactions, based on a force-clamp assay with BFP.

6.
Front Bioeng Biotechnol ; 10: 953353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837553

RESUMO

Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.

7.
Biophys Rep ; 7(5): 377-383, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37288100

RESUMO

Complex physical cues including two-dimensional membrane environment, dynamic mechanical force, and bioelectric activity inevitably affect membrane receptor functions. Multiplexed single-molecule force spectroscopy (SMFS) techniques with the capability of live-cell measurements are essential to systemically dissect receptor's functions under complex biophysical regulation. In this review, we summarize recent progress of live-cell based SMFS techniques and specifically focus on the progress of SMFS on the biomembrane force probe with enhanced mechanical stability and multiplexed capability of fluorescence imaging. We further suggest the necessity of developing multiplexed SMFS techniques with simultaneous bioelectric regulation capability to investigate membrane potential regulated membrane receptor functions. These state-of-art multiplexed SMFS techniques will dissect membrane receptors functions in a systematic biophysical angle, resolving the biochemical, biomechanical and bioelectrical regulatory mechanisms in physiologically relevant conditions.

8.
Biomed Res Int ; 2015: 486827, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106609

RESUMO

Neural synapses are intercellular asymmetrical junctions that transmit biochemical and biophysical information between a neuron and a target cell. They are very tight, dynamic, and well organized by many synaptic adhesion molecules, signaling receptors, ion channels, and their associated cytoskeleton that bear forces. Mechanical forces have been an emerging factor in regulating axon guidance and growth, synapse formation and plasticity in physiological and pathological brain activity. Therefore, mechanical forces are undoubtedly exerted on those synaptic molecules and modulate their functions. Here we review current progress on how mechanical forces regulate receptor-ligand interactions, protein conformations, ion channels activation, and cytoskeleton dynamics and discuss how these regulations potentially affect synapse formation, stabilization, and plasticity.


Assuntos
Neurogênese , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Axônios/patologia , Axônios/fisiologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Humanos , Ligantes , Neurônios/patologia , Conformação Proteica , Transdução de Sinais , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA