RESUMO
Developing low-cost and long-cycling-life aqueous zinc (Zn) ion capacitors (AZICs) for large-scale electrochemical energy storage still faces the challenges of dendritic Zn deposition and interfacial side reactions. Here, an interface engineering strategy utilizing a dibenzenesulfonimide (BBI) additive is employed to enhance the stability of the Zn metal anode/electrolyte interface. The first-principles calculation results demonstrate that BBI anions can be chemically adsorbed on Zn metal. Meanwhile, the experimental results confirm that the BBI-Zn interfacial layer converts the original water-richelectric double layer (EDL) into a water-poor EDL, effectively inhibiting the water related parasitic reaction at the electrode/electrolyte interface. In addition, the BBI-Zn interfacial layer introduces an additional Zn ions (Zn2+) migration energy barrier, increasing the Zn2+ de-solvation activation energy, consequently raising the Zn2+ nucleation overpotential, and thus achieving the compact and uniform Zn deposition behavior. Furthermore, the solid electrolyte interphase (SEI) layer derived from the BBI-Zn interfacial layer during cycling can further maintain the interfacial stability of the Zn anode. Owing to the above favorable features, the assembled AZIC exhibits an ultra-long cycling life of over 300 000 cycles based on the additive engineering strategy, which shows application prospects in high-performance AZICs.
RESUMO
In the search for next-generation green energy storage solutions, Cu-S electrochemistry has recently gained attraction from the battery community owing to its affordability and exceptionally high specific capacity of 3350 mAh gs -1. However, the inferior conductivity and substantial volume expansion of the S cathode hinder its cycling stability, while the low output voltage limits its energy density. Herein, a hollow carbon sphere (HCS) is synthesized as a 3D conductive host to achieve a stable S@HCS cathode, which enables an outstanding cycling performance of 2500 cycles (over 9 months). To address the latter, a Zn//S@HCS alkaline-acid decoupled cell is configured to increase the output voltage from 0.18 to 1.6 V. Moreover, an electrode and electrolyte co-energy storage mechanism is proposed to offset the reduction in energy density resulting from the extra electrolyte required in Zn//S decoupled cells. When combined, the Zn//S@HCS alkaline-acid decoupled cell delivers a record energy density of 334 Wh kg-1 based on the mass of the S cathode and CuSO4 electrolyte. This work tackles the key challenges of Cu-S electrochemistry and brings new insights into the rational design of decoupled batteries.
RESUMO
Vanadium-based compounds have attracted significant attention as cathodes for aqueous zinc metal batteries (AZMBs) because of their remarkable advantages in specific capacities. However, their low diffusion coefficient for zinc ions and structural collapse problems lead to poor rate capability and cycle stability. In this work, bilayered Sr0.25V2O5·0.8H2O (SVOH) nanowires are first reported as a highly stable cathode material for rechargeable AZMBs. The synergistic pillaring effect of strontium ions and water molecules improves the structural stability and ion transport dynamics of vanadium-based compounds. Consequently, the SVOH cathode exhibits a high capacity of 325.6 mAh g-1 at 50 mA g-1, with a capacity retention rate of 72.6% relative to the maximum specific capacity at 3.0 A g-1 after 3000 cycles. Significantly, a unique single-nanowire device is utilized to demonstrate the excellent conductivity of the SVOH cathode directly. Additionally, the energy storage mechanism of zinc insertion and extraction is investigated using a variety of advanced in situ and ex situ analysis techniques. This method of ion intercalation to improve electrochemical performance will further promote the development of AZMBs in large-scale applications.
RESUMO
A rational design of sulfur host is the key to conquering the"polysulfide shuttle effects" by accelerating the polysulfide conversion. Since the process involves solid-liquid-solid multistep phase transitions, purposely-engineered heterostructure catalysts with various active regions for catalyzing conversion steps correspondingly are beneficial to promote the overall conversion process. However, the functionalities of the materials surface and interface in heterostructure catalysts remain unclear. In this work, an Mo2C/MoC catalyst with abundant Mo2C surface-interface-MoC surface tri-active-region is developed by in situ converting the MoZn-metal organic framework. The experimental and simulation studies demonstrate the interface can catch long-chain polysulfides and promote their conversion. Instead, the Mo2C and MoC tend to accommodate the short-chain polysulfide and accelerate their conversion and the Li2S dissociation. Benefitting from the high catalytic ability, the Li-S battery assembled with the Mo2C/MoC-S cathode shows more discrete redox reactions and delivers a high initial capacity of 1603.6 mAh g-1 at 1 C charging-discharging rate, which is over twofolds of the one assembled using individual hosts, and 80.4% capacity can be maintained after 1000 cycles at 3 C rate. This work has demonstrated a novel synergy between the interface and material surface, which will help the future design of high-performance Li-S batteries.
RESUMO
Rechargeable magnesium batteries (RMBs) have gradually got attention due to the high theoretical capacity, low cost and high security. However, the lack of suitable cathode materials has been a major obstacle to the development of RMBs. Transition metal sulfides (TMSs) have been studied extensively because of their high theoretical specific capacity and other advantages. However, the diffusion rate of Mg2+ in TMSs is slow and side reactions are easy to occur. In this work, soft anion doping strategy was adopted at Co4S3 cathode material. After doping the appropriate content of Se, it showed the specific capacity of 248 mAh g-1 at a current density of 100 mA g-1. The mechanism of magnesium storage was investigated by ex-situ technique. This work laid a foundation for researching cobalt-based sulfide in cathode materials of RMBs.
RESUMO
Rechargeable magnesium batteries (RMBs) are a highly promising energy storage system due to their high volumetric capacity and intrinsic safety. However, the practical development of RMBs is hindered by the sluggish Mg2+ diffusion kinetics, including at the cathode-electrolyte interface (CEI) and within the cathode bulk. Herein, we propose an efficient strategy to manipulate the interfacial chemistry and coordination structure in oligolayered V2O5 (L-V2O5) for achieving rapid Mg2+ diffusion kinetics. In terms of the interfacial chemistry, the specific exposed crystal planes in L-V2O5 possess strong electron donating ability, which helps to promote the degradation dynamics of C-F/C-S bonds in the electrolyte, thereby establishing the inorganic-organic interlocking CEI layer for rapid Mg2+ diffusion. In terms of the coordination structure, the straightened V-O structure in L-V2O5 provides efficient ions diffusion path for accelerating Mg2+ diffusion in the cathode. As a result, the L-V2O5 delivers a high reversible capacity (355.3â mA h g-1 at 0.1â A g-1) and an excellent rate capability (161â mAh g-1 at 1â A g-1). Impressively, the interdigital micro-RMBs is firstly assembled, exhibiting excellent flexibility and practicability. This work gives deeper insights into the interface and interior ions diffusion for developing high-kinetics RMBs.
RESUMO
Aqueous Zn-ion batteries are an attractive electrochemical energy storage solution for their budget and safe properties. However, dendrites and uncontrolled side reactions in anodes detract the cycle life and energy density of the batteries. Grain boundaries in metals are generally considered as the source of the above problems but we present a diverse result. This study introduces an ultra-high proportion of grain boundaries on zinc electrodes through femtosecond laser bombardment to enhance stability of zinc metal/electrolyte interface. The ultra-high proportion of grain boundaries promotes the homogenization of zinc growth potential, to achieve uniform nucleation and growth, thereby suppressing dendrite formation. Additionally, the abundant active sites mitigate the side reactions during the electrochemical process. Consequently, the 15â µm Fs-Zn||MnO2 pouch cell achieves an energy density of 249.4â Wh kg-1 and operates for over 60 cycles at a depth-of-discharge of 23 %. The recognition of the favorable influence exerted by UP-GBs paves a new way for other metal batteries.
RESUMO
Lithium metal anode is the ultimate choice to obtain next-generation high-energy-density lithium batteries, while the dendritic lithium growth owing to the unstable lithium anode/electrolyte interface largely limits its practical application. Separator is an important component in batteries and separator engineering is believed to be a tractable and effective way to address the above issue. Separators can play the role of ion redistributors to guide the transport of lithium ions and regulate the uniform electrodeposition of Li. The electrolyte wettability, thermal shrinkage resistance, and mechanical strength are of importance for separators. Here, clay-originated two-dimensional (2D) holey amorphous silica nanosheets (ASN) to develop a low-cost and eco-friendly inorganic separator is directly adopted. The ASN-based separator has higher porosity, better electrolyte wettability, much higher thermal resistance, larger lithium transference number, and ionic conductivity compared with commercial separator. The large amounts of holes and rich surface oxygen groups on the ASN guide the uniform distribution of lithium-ion flux. Consequently, the Li//Li cell with this separator shows stable lithium plating/stripping, and the corresponding Li//LiFePO4 , Li//LiCoO2, and Li//NCM523 full cells also show high capacity, excellent rate performance, and outstanding cycling stability, which is much superior to that using the commercial separator.
RESUMO
Exploring promising electrolyte-system with high reversible Mg plating/stripping and excellent stability is essential for rechargeable magnesium batteries (RMBs). Fluoride alkyl magnesium salts (Mg(ORF )2 ) not only possess high solubility in ether solvents but also compatible with Mg metal anode, thus holding a vast application prospect. Herein, a series of diverse Mg(ORF )2 were synthesized, among them, perfluoro-tert-butanol magnesium (Mg(PFTB)2 )/AlCl3 /MgCl2 based electrolyte demonstrates highest oxidation stability, and promotes the in situ formation of robust solid electrolyte interface. Consequently, the fabricated symmetric cell sustains a long-term cycling over 2000â h, and the asymmetric cell exhibits a stable Coulombic efficiency of 99.5 % over 3000â cycles. Furthermore, the Mg||Mo6 S8 full cell maintains a stable cycling over 500â cycles. This work presents guidance for understanding structure-property relationships and electrolyte applications of fluoride alkyl magnesium salts.
RESUMO
Co-insertion of protons happens widely and enables divalent-ion aqueous batteries to achieve high performances. However, detailed investigations and comprehensive understandings of proton co-insertion are scarce. Herein, we demonstrate that proton co-insertion into tunnel materials is determined jointly by interface derivation and inner diffusion: at the interface, hdrated Mg2+ has poor insertion kinetics, and therefore accumulates and hydrolyzes to produce protons; in the tunnels, co-inserted/lattice H2 O molecules block the Mg2+ diffusion while facilitate the proton diffusion. When monoclinic vanadium dioxide (VO2 (B)) anode is tested in Mg(CH3 COO)2 aqueous solution, the formation of Mg-rich solid electrolyte interphase on the VO2 (B) electrode and co-insertion of derived protons are probed; in the tunnels, the diffusion energy barrier of Mg2+ +H2 O is 2.7â eV, while that of the protons is 0.37â eV. Thus, protons dominate the subsequent insertion and inner diffusion. As a consequence, the VO2 (B) achieves a high capacity of 257.0â mAh g-1 at 1â A g-1 , a high rate retention of 59.1 % from 1 to 8â A g-1 , and stable cyclability of 3000 times with a capacity retention of 81.5 %. This work provides an in-depth understanding of the proton co-insertion and may promote the development of rechargeable aqueous batteries.
RESUMO
Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an "escort effect" of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+ ) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900â h at 1â mA cm-2 (more than 4 times longer than the blank one). Moreover, the universality of "escort effect" is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries.
RESUMO
Magnesium ion batteries (MIBs) have attracted much attention due to their low cost and high safety properties. However, the intense charge repulsion effect and sluggish diffusion dynamics of Mg2+ ions result in unsatisfactory electrochemical performance of conventional cathode materials in MIBs. This work reports water-lubricated aluminum vanadate (HAlVO) as high-performance cathode material for Mg2+ ions storage and investigates the capacity fade mechanism of water-free aluminum vanadate (AlVO). The charge density difference based on density functional theory calculation is performed to analyze the charge transfer process of water-lubricated/free aluminum vanadates (HAlVO/AlVO). The different charge transfer phenomena of two materials and the charge shielding effect of water molecule in HAlVO are revealed. Moreover, the single-phase structural evolution process and the Mg2+ ions storage mechanism of HAlVO are further investigated deeply by different in situ and ex situ characterization methods. This work proves that HAlVO is a potential candidate cathode material to satisfy the high-performance reversible Mg2+ ions storage, and the water-lubricated method is an effective strategy to improve the electrochemical performance of vanadium oxides cathode.
RESUMO
Electrochemical sodium-ion storage technologies have become an indispensable part in the field of large-scale energy storage systems owing to the widespread and low-cost sodium resources. Molybdenum carbides with high electron conductivity are regarded as potential sodium storage anode materials, but the comprehensive sodium storage mechanism has not been studied in depth. Herein, Mo2 C nanowires (MC-NWs) in which Mo2 C nanoparticles are embedded in carbon substrate are synthesized. The sodium-ion storage mechanism is further systematically studied by in/ex situ experimental characterizations and diffusion kinetics analysis. Briefly, it is discovered that a faradaic redox reaction occurs in the surface amorphous molybdenum oxides on Mo2 C nanoparticles, while the inner Mo2 C is unreactive. Thus, the as-synthesized MC-NWs with surface pseudocapacitance display excellent rate capability (a high specific capacity of 76.5 mAh g-1 at 20 A g-1 ) and long cycling stability (a high specific capacity of 331.2 mAh g-1 at 1 A g-1 over 1500 cycles). The assembled original sodium ion capacitor displays remarkable power density and energy density. This work provides a comprehensive understanding of the sodium storage mechanism of Mo2 C materials, and constructing pseudocapacitive materials is an effective way to achieve sodium-ion storage devices with high power and energy density.
RESUMO
Rechargeable magnesium batteries (RMBs) have been regarded as one of the promising electrochemical energy storage systems to complement Li-ion batteries owing to the low-cost and high safety characteristics. However, the various challenges including the sluggish solid-state diffusion of highly polarizing Mg2+ ions in hosts, and the formation of blocking layers on Mg metal surface have seriously impeded the development of high-performance RMBs. In order to solve these problems toward practical applications of RMBs, a tremendous amount of work on electrodes and electrolytes has been conducted in the last few decades. Creative optimization strategies including the modification of cathodes and anodes such as shielding the charges of divalent Mg2+ , expanding the layers of host materials, and optimizing the interface of electrode-electrolyte are raised to promote the technology. In this review, the detailed description of innovative approaches, representative examples, and facing challenges for developing high-performance electrodes are presented. Based on the review of these strategies, guidelines are provided for future research directions on improving the overall battery performance, especially on the electrodes.
RESUMO
Developing pseudocapacitive cathodes for sodium ion capacitors (SICs) is very significant for enhancing energy density of SICs. Vanadium oxides cathodes with pseudocapacitive behavior are able to offer high capacity. However, the capacity fading caused by the irreversible collapse of layer structure remains a major issue. Herein, based on the Acid-Base Proton theory, a strongly coupled layered pyridine-V2 O5 ·nH2 O nanowires cathode is reported for highly efficient sodium ion storage. By density functional theory calculations, in situ X-ray diffraction, and ex situ Fourier-transform infrared spectroscopy, a strong interaction between protonated pyridine and VO group is confirmed and stable during cycling. The pyridine-V2 O5 ·nH2 O nanowires deliver long-term cyclability (over 3000 cycles), large pseudocapacitive behavior (78% capacitive contribution at 1 mV s-1 ) and outstanding rate capability. The assembled pyridine-V2 O5 ·nH2 O//graphitic mesocarbon microbead SIC delivers high energy density of ≈96 Wh kg-1 (at 59 W kg-1 ) and power density of 14 kW kg-1 (at 37.5 Wh kg-1 ). The present work highlights the strategy of realizing strong interaction in the interlayer of V2 O5 ·nH2 O to enhance the electrochemical performance of vanadium oxides cathodes. The strategy could be extended for improving the electrochemical performance of other layered materials.
RESUMO
Tuning the uniformity and size of binary metal oxide nanodots on graphene oxide (BMO NDs@GO) is significant but full of challenges in wet-chemistry, owing to the difficulties of controlling the complicated cation/anion co-adsorption, heterogeneous nucleation, and overgrowth processes. Herein, the aim is to tune these processes by understanding the functions of various alcohol solvents for NDs growth on GO. It is found that the polyol solvation effect is beneficial for obtaining highly uniform BMO NDs@GO. Polyol shell capped metal ions exhibit stronger hydrogen-bond interactions with the GO surface, leading to a uniform cation/anion co-adsorption and followed heterogeneous nucleation. The polyol-solvated ions with large diffusion energy barrier drastically limit the ion diffusion kinetics in liquids and at the solid/liquid interface, resulting in a slow and controllable growth. Moreover, the synthesis in polyol systems is highly controllable and universal, thus eleven BMO and polynary metal oxide NDs@GO are obtained by this method. The synthetic strategy provides improved prospects for the manufacture of inorganic NDs and their expanding electrochemical applications.
RESUMO
As a typical member of transition-metal dichalcogenides (TMDs), VS2 has been evaluated as the aluminum-ion battery cathode for the first time. To further improve their stability and conductivity, the as-prepared VS2 nanosheets are modified with graphene (denoted as G-VS2). And the G-VS2 electrode delivers a high initial discharge capacity of 186 mA h g-1 at 100 mA g-1 with almost 100% coulombic efficiency after 50 cycles. Furthermore, an explicit intercalation mechanism of Al into G-VS2 has been investigated by in/ex situ XRD, ex situ Raman and TEM spectroscopy. And the G-VS2 composite proves to be an impressive cathode material for aluminum-ion batteries (AIBs). This work might put forward the application of TMDs in AIBs.
RESUMO
Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg-1 , and an NaCrO2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies.
RESUMO
It is of great importance to exploit electrode materials for sodium-ion batteries (SIBs) with low cost, long life, and high-rate capability. However, achieving quick charge and high power density is still a major challenge for most SIBs electrodes because of the sluggish sodiation kinetics. Herein, uniform and mesoporous NiS2 nanospheres are synthesized via a facile one-step polyvinylpyrrolidone assisted method. By controlling the voltage window, the mesoporous NiS2 nanospheres present excellent electrochemical performance in SIBs. It delivers a high reversible specific capacity of 692 mA h g-1 . The NiS2 anode also exhibits excellent high-rate capability (253 mA h g-1 at 5 A g-1 ) and long-term cycling performance (319 mA h g-1 capacity remained even after 1000 cycles at 0.5 A g-1 ). A dominant pseudocapacitance contribution is identified and verified by kinetics analysis. In addition, the amorphization and conversion reactions during the electrochemical process of the mesoporous NiS2 nanospheres is also investigated by in situ X-ray diffraction. The impressive electrochemical performance reveals that the NiS2 offers great potential toward the development of next generation large scale energy storage.
RESUMO
Rechargeable aqueous zinc-ion batteries have offered an alternative for large-scale energy storage owing to their low cost and material abundance. However, developing suitable cathode materials with excellent performance remains great challenges, resulting from the high polarization of zinc ion. In this work, an aqueous zinc-ion battery is designed and constructed based on H2 V3 O8 nanowire cathode, Zn(CF3 SO3 )2 aqueous electrolyte, and zinc anode, which exhibits the capacity of 423.8 mA h g-1 at 0.1 A g-1 , and excellent cycling stability with a capacity retention of 94.3% over 1000 cycles. The remarkable electrochemical performance is attributed to the layered structure of H2 V3 O8 with large interlayer spacing, which enables the intercalation/de-intercalation of zinc ions with a slight change of the structure. The results demonstrate that exploration of the materials with large interlayer spacing is an effective strategy for improving electrochemical stability of electrodes for aqueous Zn ion batteries.