Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neuroimage ; 238: 118216, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052465

RESUMO

Accurate detection and quantification of unruptured intracranial aneurysms (UIAs) is important for rupture risk assessment and to allow an informed treatment decision to be made. Currently, 2D manual measures used to assess UIAs on Time-of-Flight magnetic resonance angiographies (TOF-MRAs) lack 3D information and there is substantial inter-observer variability for both aneurysm detection and assessment of aneurysm size and growth. 3D measures could be helpful to improve aneurysm detection and quantification but are time-consuming and would therefore benefit from a reliable automatic UIA detection and segmentation method. The Aneurysm Detection and segMentation (ADAM) challenge was organised in which methods for automatic UIA detection and segmentation were developed and submitted to be evaluated on a diverse clinical TOF-MRA dataset. A training set (113 cases with a total of 129 UIAs) was released, each case including a TOF-MRA, a structural MR image (T1, T2 or FLAIR), annotation of any present UIA(s) and the centre voxel of the UIA(s). A test set of 141 cases (with 153 UIAs) was used for evaluation. Two tasks were proposed: (1) detection and (2) segmentation of UIAs on TOF-MRAs. Teams developed and submitted containerised methods to be evaluated on the test set. Task 1 was evaluated using metrics of sensitivity and false positive count. Task 2 was evaluated using dice similarity coefficient, modified hausdorff distance (95th percentile) and volumetric similarity. For each task, a ranking was made based on the average of the metrics. In total, eleven teams participated in task 1 and nine of those teams participated in task 2. Task 1 was won by a method specifically designed for the detection task (i.e. not participating in task 2). Based on segmentation metrics, the top two methods for task 2 performed statistically significantly better than all other methods. The detection performance of the top-ranking methods was comparable to visual inspection for larger aneurysms. Segmentation performance of the top ranking method, after selection of true UIAs, was similar to interobserver performance. The ADAM challenge remains open for future submissions and improved submissions, with a live leaderboard to provide benchmarking for method developments at https://adam.isi.uu.nl/.


Assuntos
Angiografia Cerebral/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Conjuntos de Dados como Assunto , Avaliação Educacional , Humanos , Imageamento por Ressonância Magnética , Distribuição Aleatória , Medição de Risco
2.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6695-6714, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314356

RESUMO

With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark datasets. However, most of the existing abdominal datasets only contain single-center, single-phase, single-vendor, or single-disease cases, and it is unclear whether the excellent performance can generalize on diverse datasets. This paper presents a large and diverse abdominal CT organ segmentation dataset, termed AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers, including multi-phase, multi-vendor, and multi-disease cases. Furthermore, we conduct a large-scale study for liver, kidney, spleen, and pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods, such as the limited generalization ability on distinct medical centers, phases, and unseen diseases. To advance the unsolved problems, we further build four organ segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning, which are currently challenging and active research topics. Accordingly, we develop a simple and effective method for each benchmark, which can be used as out-of-the-box methods and strong baselines. We believe the AbdomenCT-1K dataset will promote future in-depth research towards clinical applicable abdominal organ segmentation methods.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Pâncreas , Baço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
3.
Med Image Anal ; 82: 102616, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179380

RESUMO

Automatic segmentation of abdominal organs in CT scans plays an important role in clinical practice. However, most existing benchmarks and datasets only focus on segmentation accuracy, while the model efficiency and its accuracy on the testing cases from different medical centers have not been evaluated. To comprehensively benchmark abdominal organ segmentation methods, we organized the first Fast and Low GPU memory Abdominal oRgan sEgmentation (FLARE) challenge, where the segmentation methods were encouraged to achieve high accuracy on the testing cases from different medical centers, fast inference speed, and low GPU memory consumption, simultaneously. The winning method surpassed the existing state-of-the-art method, achieving a 19× faster inference speed and reducing the GPU memory consumption by 60% with comparable accuracy. We provide a summary of the top methods, make their code and Docker containers publicly available, and give practical suggestions on building accurate and efficient abdominal organ segmentation models. The FLARE challenge remains open for future submissions through a live platform for benchmarking further methodology developments at https://flare.grand-challenge.org/.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem , Benchmarking , Processamento de Imagem Assistida por Computador/métodos
4.
Med Phys ; 48(3): 1197-1210, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33354790

RESUMO

PURPOSE: Accurate segmentation of lung and infection in COVID-19 computed tomography (CT) scans plays an important role in the quantitative management of patients. Most of the existing studies are based on large and private annotated datasets that are impractical to obtain from a single institution, especially when radiologists are busy fighting the coronavirus disease. Furthermore, it is hard to compare current COVID-19 CT segmentation methods as they are developed on different datasets, trained in different settings, and evaluated with different metrics. METHODS: To promote the development of data-efficient deep learning methods, in this paper, we built three benchmarks for lung and infection segmentation based on 70 annotated COVID-19 cases, which contain current active research areas, for example, few-shot learning, domain generalization, and knowledge transfer. For a fair comparison among different segmentation methods, we also provide standard training, validation and testing splits, evaluation metrics and, the corresponding code. RESULTS: Based on the state-of-the-art network, we provide more than 40 pretrained baseline models, which not only serve as out-of-the-box segmentation tools but also save computational time for researchers who are interested in COVID-19 lung and infection segmentation. We achieve average dice similarity coefficient (DSC) scores of 97.3%, 97.7%, and 67.3% and average normalized surface dice (NSD) scores of 90.6%, 91.4%, and 70.0% for left lung, right lung, and infection, respectively. CONCLUSIONS: To the best of our knowledge, this work presents the first data-efficient learning benchmark for medical image segmentation, and the largest number of pretrained models up to now. All these resources are publicly available, and our work lays the foundation for promoting the development of deep learning methods for efficient COVID-19 CT segmentation with limited data.


Assuntos
COVID-19/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Tomografia Computadorizada por Raios X , Benchmarking , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA