Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626557

RESUMO

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Quimiocinas/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Imagem Molecular , Receptores de Quimiocinas
2.
Mol Pharm ; 21(6): 2960-2969, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38680059

RESUMO

Very late antigen-4 (VLA-4) is a transmembrane integrin protein that is highly expressed in aggressive forms of metastatic melanoma. A small-molecule peptidomimetic, LLP2A, was found to have a low pM affinity binding to VLA-4. Because LLP2A itself does not inhibit cancer cell proliferation and survival, it is an ideal candidate for the imaging and delivery of therapeutic payloads. An analog of [177Lu]Lu-labeled-LLP2A was previously investigated as a therapeutic agent in melanoma tumor-bearing mice, resulting in only a modest improvement in tumor growth inhibition, likely due to rapid clearance of the agent from the tumor. To improve the pharmacokinetic profile, DOTAGA-PEG4-LLP2A with a 4-(p-iodophenyl)butyric acid (pIBA) albumin binding moiety was synthesized. We demonstrate the feasibility of this albumin binding strategy by comparing in vitro cell binding assays and in vivo biodistribution performance of [177Lu]Lu-DOTAGA-PEG4-LLP2A ([177Lu]Lu-1) to the albumin binding [177Lu]Lu-DOTAGA-pIBA-PEG4-LLP2A ([177Lu]Lu-2). In vitro cell binding assay results for [177Lu]Lu-1 and [177Lu]Lu-2 showed Kd values of 0.40 ± 0.07 and 1.75 ± 0.40 nM, with similar Bmax values of 200 ± 6 and 315 ± 15 fmol/mg, respectively. In vivo biodistribution data for both tracers exhibited specific uptake in the tumor, spleen, thymus, and bone due to endogenous expression of VLA-4. Compound [177Lu]Lu-2 exhibited a much longer blood circulation time compared to [177Lu]Lu-1. The tumor uptake for [177Lu]Lu-1 was highest at 1 h (∼15%ID/g) and that for [177Lu]Lu-2 was highest at 4 h (∼23%ID/g). Significant clearance of [177Lu]Lu-1 from the tumor occurs at 24 h (<5%ID/g) while[177Lu]Lu-2 is retained for greater than 96 h (∼10%ID/g). An efficacy study showed that melanoma tumor-bearing mice receiving compound [177Lu]Lu-2 given in two fractions (2 × 14.8 MBq, 14 days apart) had a greater median survival time than mice administered a single 29.6 MBq dose of compound [177Lu]Lu-1, while a single 29.6 MBq dose of [177Lu]Lu-2 imparted hematopoietic toxicity. The in vitro and in vivo data show addition of pIBA to [177Lu]Lu-DOTAGA-PEG4-LLP2A slows blood clearance for a higher tumor uptake, and there is potential of [177Lu]Lu-2 as a theranostic in fractionated administered doses.


Assuntos
Lutécio , Radioisótopos , Animais , Camundongos , Distribuição Tecidual , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Humanos , Compostos Radiofarmacêuticos/farmacocinética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Feminino , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/antagonistas & inibidores , Albuminas , Peptídeos/química , Peptídeos/farmacocinética , Nanomedicina Teranóstica/métodos , Camundongos Endogâmicos C57BL , Dipeptídeos , Compostos de Fenilureia
3.
Inorg Chem ; 60(10): 7082-7088, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33689299

RESUMO

A series of water-soluble chiral cyclen-based chelators with chemical handles for selective targeting have been synthesized (cyclen = 1,4,7,10-Tetraazacyclododecane). Optical studies, relaxivity measurements, and competitive titrations were performed to show the versatility of these chiral chelators. The complexations of L3, L4, and L5 with Lu3+, Y3+, Sc3+, and Cu2+ were successfully demonstrated in around 90% to 100% yields. Efficient and rapid radiolabeling of L5 with 177Lu was achieved under mild conditions with 96% yield. The chelators exhibit near quantitative labeling efficiencies with a wide range of radiometal ions, which are promising for the development of targeting specific radiopharmaceutical and molecular magnetic resonance imaging contrast agents.

4.
Mol Carcinog ; 58(6): 996-1007, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720225

RESUMO

The overall promise of breast cancer chemoprevention is exemplified by clinical success of selective estrogen receptor modulators and aromatase inhibitors. Despite clinical efficacy, these interventions have limitations, including rare but serious side effects and lack of activity against estrogen receptor-negative breast cancers. We have shown previously that dietary administration of benzyl isothiocyanate (BITC), which occurs naturally as a thioglucoside conjugate in edible cruciferous vegetables, inhibits development of estrogen receptor-negative breast cancer in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice. This study demonstrates AKT-mediated sugar addiction in breast cancer chemoprevention by BITC. BITC-treated MMTV-neu mice exhibited increased 2-deoxy-2-(18 F)-fluoro-D-glucose (18 F-FDG) uptake in mammary tumors in vivo in comparison with mice fed basal diet. Cellular studies using MDA-MB-231 and SUM159 human breast cancer cell lines revealed BITC-mediated induction and punctate localization of glucose transporter GLUT-1, which was accompanied by an increase in intracellular pyruvate levels. BITC treatment resulted in increased S473 phosphorylation (activation) of AKT in cells in vitro as well as in mammary tumors of MMTV-neu mice in vivo. Increased glucose uptake, punctate pattern of GLUT-1 localization, and intracellular pyruvate levels resulting from BITC exposure were significantly attenuated in the presence of a pharmacological inhibitor of AKT (MK-2206). Inhibition of AKT augmented BITC-mediated inhibition of cell migration and colony formation. BITC-induced apoptotic cell death was also increased by pharmacological inhibition of AKT. These results indicate increased glucose uptake/metabolism by BITC treatment in breast cancer cells suggesting that breast cancer chemoprevention by BITC may be augmented by pharmacological inhibition of AKT.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fluordesoxiglucose F18/metabolismo , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Isotiocianatos/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Transportador de Glucose Tipo 1/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Isotiocianatos/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Immunol ; 199(2): 806-815, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592427

RESUMO

Positron emission tomography and computed tomography imaging (PET/CT) is an increasingly valuable tool for diagnosing tuberculosis (TB). The glucose analog [18F]fluoro-2-deoxy-2-d-glucose ([18F]-FDG) is commonly used in PET/CT that is retained by metabolically active inflammatory cells in granulomas, but lacks specificity for particular cell types. A PET probe that could identify recruitment and differentiation of different cell populations in granulomas would be a useful research tool and could improve TB diagnosis and treatment. We used the Mycobacterium-antigen murine inflammation model and macaques with TB to identify [64Cu]-labeled CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A), a high affinity peptidomimetic ligand for very late Ag-4 (VLA-4; also called integrin α4ß1) binding cells in granulomas, and compared [64Cu]-LLP2A with [18F]-FDG over the course of infection. We found that [64Cu]-LLP2A retention was driven by macrophages and T cells, with less contribution from neutrophils and B cells. In macaques, granulomas had higher [64Cu]-LLP2A uptake than uninfected tissues, and immunohistochemical analysis of granulomas with known [64Cu]-LLP2A uptake identified significant correlations between LLP2A signal and macrophage and T cell numbers. The same cells coexpressed integrin α4 and ß1, further supporting that macrophages and T cells drive [64Cu]-LLP2A avidity in granulomas. Over the course of infection, granulomas and thoracic lymph nodes experienced dynamic changes in affinity for both probes, suggesting metabolic changes and cell differentiation or recruitment occurs throughout granuloma development. These results indicate [64Cu]-LLP2A is a PET probe for VLA-4, which when used in conjunction with [18F]-FDG, may be a useful tool for understanding granuloma biology in TB.


Assuntos
Glucose/metabolismo , Granuloma/imunologia , Integrina alfa4beta1/genética , Tuberculose/diagnóstico por imagem , Tuberculose/imunologia , Animais , Diferenciação Celular , Movimento Celular , Granuloma/diagnóstico por imagem , Granuloma/metabolismo , Granuloma/fisiopatologia , Compostos Heterocíclicos com 2 Anéis/química , Integrina alfa4beta1/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Macaca , Macrófagos/imunologia , Neutrófilos/imunologia , Organofosfonatos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Linfócitos T/imunologia , Tuberculose/diagnóstico , Tuberculose/microbiologia
6.
Carcinogenesis ; 39(2): 134-145, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29040431

RESUMO

Osteolytic bone resorption is the primary cause of pain and suffering (e.g. pathological bone fracture) in women with metastatic breast cancer. The current standard of care for patients with bone metastasis for reducing the incidence of skeletal complications includes bisphosphonates and a humanized antibody (denosumab). However, a subset of patients on these therapies still develops new bone metastasis or experiences adverse effects. Moreover, some bisphosphonates have poor oral bioavailability. Therefore, orally-bioavailable and non-toxic inhibitors of breast cancer-induced osteolytic bone resorption are still clinically desirable. We have shown previously that benzyl isothiocyanate (BITC) decreases the incidence of breast cancer in a transgenic mouse model without any side effects. The present study provides in vivo evidence for inhibition of breast cancer-induced osteolytic bone resorption by BITC. Plasma achievable doses of BITC (0.5 and 1 µM) inhibited in vitro osteoclast differentiation induced by co-culture of osteoclast precursor cells (RAW264.7) and breast cancer cells representative of different subtypes. This effect was accompanied by downregulation of key mediators of osteoclast differentiation, including receptor activator of nuclear factor-κB ligand and runt-related transcription factor 2 (RUNX2), in BITC-treated breast cancer cells. Doxycycline-inducible knockdown of RUNX2 augmented BITC-mediated inhibition of osteoclast differentiation. Oral administration of 10 mg BITC/kg body weight, 5 times per week, inhibited MDA-MB-231-induced skeletal metastasis multiplicity by ~81% when compared with control (P = 0.04). The present study indicates that BITC has the ability to inhibit breast cancer-induced osteolytic bone resorption in vivo.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Isotiocianatos/farmacologia , Osteólise/prevenção & controle , Animais , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/efeitos dos fármacos , Células RAW 264.7
7.
Mol Imaging ; 16: 1536012116685941, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654376

RESUMO

PURPOSE: We investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid (18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. PROCEDURES: BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samples of baseline and on days 1, 3, and 7 posttreatment. RESULTS: Treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. CONCLUSION: 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.


Assuntos
Apoptose/fisiologia , Fluordesoxiglucose F18/análise , Ácido Metilmalônico/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Humanos , Imuno-Histoquímica , Ácido Metilmalônico/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Philos Trans A Math Phys Eng Sci ; 375(2107)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29038378

RESUMO

Molecular imaging (MI), used in its wider sense of biology at the molecular level, is a field that lies at the intersection of molecular biology and traditional medical imaging. As advances in medicine have exponentially expanded over the last few decades, so has our need to better understand the fundamental behaviour of living organisms in a non-invasive and timely manner. This commentary draws from topics the authors addressed in their presentations at the 2017 Royal Society Meeting 'Challenges for chemistry in molecular imaging', as well as a discussion of where MI is today and where it is heading in the future.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.


Assuntos
Imagem Molecular/métodos , Biomarcadores/metabolismo , Humanos , Inflamação/diagnóstico por imagem , Imagem Molecular/tendências , Técnicas de Sonda Molecular , Sondas Moleculares , Terapia de Alvo Molecular , Imagem Multimodal , Medicina de Precisão , Cirurgia Assistida por Computador
9.
Adv Exp Med Biol ; 1036: 229-257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29275475

RESUMO

The tumor microenvironment consists of tumor, stromal, and immune cells, as well as extracellular milieu. Changes in numbers of these cell types and their environments have an impact on cancer growth and metastasis. Non-invasive imaging of aspects of the tumor microenvironment can provide important information on the aggressiveness of the cancer, whether or not it is metastatic, and can also help to determine early response to treatment. This chapter provides an overview on non-invasive in vivo imaging in humans and mouse models of various cell types and physiological parameters that are unique to the tumor microenvironment. Current clinical imaging and research investigation are in the areas of nuclear imaging (positron emission tomography (PET) and single photon emission computed tomography (SPECT)), magnetic resonance imaging (MRI) and optical (near infrared (NIR) fluorescence) imaging. Aspects of the tumor microenvironment that have been imaged by PET, MRI and/or optical imaging are tumor associated inflammation (primarily macrophages and T cells), hypoxia, pH changes, as well as enzymes and integrins that are highly prevalent in tumors, stroma and immune cells. Many imaging agents and strategies are currently available for cancer patients; however, the investigation of novel avenues for targeting aspects of the tumor microenvironment in pre-clinical models of cancer provides the cancer researcher with a means to monitor changes and evaluate novel treatments that can be translated into the clinic.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia
10.
Breast Cancer Res Treat ; 157(1): 41-54, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27097807

RESUMO

The present study offers novel insights into the molecular circuitry of accelerated in vivo tumor growth by Notch2 knockdown in triple-negative breast cancer (TNBC) cells. Therapeutic vulnerability of Notch2-altered growth to a small molecule (withaferin A, WA) is also demonstrated. MDA-MB-231 and SUM159 cells were used for the xenograft studies. A variety of technologies were deployed to elucidate the mechanisms underlying tumor growth augmentation by Notch2 knockdown and its reversal by WA, including Fluorescence Molecular Tomography for measurement of tumor angiogenesis in live mice, Seahorse Flux analyzer for ex vivo measurement of tumor metabolism, proteomics, and Luminex-based cytokine profiling. Stable knockdown of Notch2 resulted in accelerated in vivo tumor growth in both cells reflected by tumor volume and/or latency. For example, the wet tumor weight from mice bearing Notch2 knockdown MDA-MB-231 cells was about 7.1-fold higher compared with control (P < 0.0001). Accelerated tumor growth by Notch2 knockdown was highly sensitive to inhibition by a promising steroidal lactone (WA) derived from a medicinal plant. Molecular underpinnings for tumor growth intensification by Notch2 knockdown included compensatory increase in Notch1 activation, increased cellular proliferation and/or angiogenesis, and increased plasma or tumor levels of growth stimulatory cytokines. WA administration reversed many of these effects providing explanation for its remarkable anti-cancer efficacy. Notch2 functions as a tumor growth suppressor in TNBC and WA offers a novel therapeutic strategy for restoring this function.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Receptor Notch2/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Vitanolídeos/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Receptor Notch1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Vitanolídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Inorg Chem ; 55(14): 6892-901, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27347690

RESUMO

Bifunctional chelators play an important role in developing metallic radionuclide-based radiopharmaceuticals. In this study, a new bifunctional ligand, p-SCN-PhPr-NE3TA, was synthesized and conjugated to a very late antigen-4 targeting peptidomimetic, LLP2A, for evaluating its application in (64)Cu-based positron emission tomography (PET) imaging. The new ligand exhibited strong selective coordination of Cu(II), leading to a robust Cu complex, even in the presence of 10-fold Fe(III). The LLP2A conjugate of p-SCN-PhPr-NE3TA was prepared and successfully labeled with (64)Cu under mild conditions. The conjugate (64)Cu-NE3TA-PEG4-LLP2A showed significantly higher specific activity, compared with (64)Cu-NOTA-PEG4-LLP2A, while maintaining comparable serum stability. Subsequent biodistribution studies and PET imaging in mice bearing B16F10 xenografts confirmed its favorable in vivo performance and high tumor uptake with low background, rendering p-SCN-PhPr-NE3TA a promising bifunctional chelator for (64)Cu-based radiopharmaceuticals.


Assuntos
Quelantes/química , Radioisótopos de Cobre/química , Peptidomiméticos/química , Tomografia por Emissão de Pósitrons/métodos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Clin Immunol ; 160(1): 59-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959685

RESUMO

Targeting macrophages for therapeutic and diagnostic purposes is an attractive approach applicable to multiple diseases. Here, we present a theranostic nanoemulsion platform for simultaneous delivery of an anti-inflammatory drug (celecoxib) to macrophages and monitoring of macrophage migration patterns by optical imaging, as measurement of changes in inflammation. The anti-inflammatory effect of the theranostic nanoemulsions was evaluated in a mouse inflammation model induced with complete Freund's adjuvant (CFA). Nanoemulsions showed greater accumulation in the inflamed vs. control paw, with histology confirming their specific localization in CD68 positive macrophages expressing cyclooxygenase-2 (COX-2) compared to neutrophils. With a single dose administration of the celecoxib-loaded theranostic, we observed a reduction in fluorescence in the paw with time, corresponding to a reduction in macrophage infiltration. Our data strongly suggest that delivery of select agents to infiltrating macrophages can potentially lead to new treatments of inflammatory diseases where macrophage behavior changes are monitored in vivo.


Assuntos
Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Portadores de Fármacos , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Nanotecnologia/métodos , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Emulsões , Feminino , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia
13.
J Gen Virol ; 96(10): 3131-3142, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297664

RESUMO

In vivo imaging can provide real-time information and three-dimensional (3D) non-invasive images of deep tissues and organs, including the brain, whilst allowing longitudinal observation of the same animals, thus eliminating potential variation between subjects. Current in vivo imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT) and bioluminescence imaging (BLI), can be used to pinpoint the spatial location of target cells, which is urgently needed for revealing human immunodeficiency virus (HIV) dissemination in real-time and HIV-1 reservoirs during suppressive antiretroviral therapy (ART). To demonstrate that in vivo imaging can be used to visualize and quantify simian immunodeficiency virus (SIV)-transduced cells, we genetically engineered SIV to carry different imaging reporters. Based on the expression of the reporter genes, we could visualize and quantify the SIV-transduced cells via vesicular stomatitis virus glycoprotein pseudotyping in a mouse model using BLI, PET-CT or MRI. We also engineered a chimeric EcoSIV for in vivo infection study. Our results demonstrated that BLI is sensitive enough to detect as few as five single cells transduced with virus, whilst PET-CT can provide 3D images of the spatial location of as few as 10 000 SIV-infected cells. We also demonstrated that MRI can provide images with high spatial resolution in a 3D anatomical context to distinguish a small population of SIV-transduced cells. The in vivo imaging platform described here can potentially serve as a powerful tool to visualize lentiviral infection, including when and where viraemia rebounds, and how reservoirs are formed and maintained during latency or suppressive ART.


Assuntos
Imagem Molecular/métodos , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Animais , Genes Reporter , Imageamento Tridimensional , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Vírus da Imunodeficiência Símia/genética , Transdução Genética , Vesiculovirus/genética
14.
Mol Pharm ; 12(6): 1929-38, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25919487

RESUMO

Malignant melanoma is a highly aggressive cancer, and the incidence of this disease is increasing worldwide at an alarming rate. Despite advances in the treatment of melanoma, patients with metastatic disease still have a poor prognosis and low survival rate. New strategies, including targeted radiotherapy, would provide options for patients who become resistant to therapies such as BRAF inhibitors. Very late antigen-4 (VLA-4) is expressed on melanoma tumor cells in higher levels in more aggressive and metastatic disease and may provide an ideal target for drug delivery and targeted radiotherapy. In this study, we evaluated (177)Lu- and (68)Ga-labeled DOTA-PEG4-LLP2A as a VLA-4-targeted radiotherapeutic with a companion PET agent for diagnosis and monitoring metastatic melanoma treatment. DOTA-PEG4-LLP2A was synthesized by solid-phase synthesis. The affinity of (177)Lu- and (68)Ga-labeled DOTA-PEG4-LLP2A to VLA-4 was determined in B16F10 melanoma cells by saturation binding and competitive binding assays, respectively. Biodistribution of the LLP2A conjugates was determined in C57BL/6 mice bearing B16F10 subcutaneous tumors, while PET/CT imaging was performed in subcutaneous and metastatic models. (177)Lu-DOTA-PEG4-LLP2A showed high affinity to VLA-4 with a Kd of 4.1 ± 1.5 nM and demonstrated significant accumulation in the B16F10 melanoma tumor after 4 h (31.5 ± 7.8%ID/g). The tumor/blood ratio of (177)Lu-DOTA-PEG4-LLP2A was highest at 24 h (185 ± 26). PET imaging of metastatic melanoma with (68)Ga-DOTA-PEG4-LLP2A showed high uptake in sites of metastases and correlated with bioluminescence imaging of the tumors. These data demonstrate that (177)Lu-DOTA-PEG4-LLP2A has potential as a targeted therapeutic for treating melanoma as well as other VLA-4-expressing tumors. In addition, (68)Ga-DOTA-PEG4-LLP2A is a readily translatable companion PET tracer for imaging of metastatic melanoma.


Assuntos
Radioisótopos de Gálio , Lutécio , Melanoma/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Animais , Linhagem Celular Tumoral , Humanos , Integrina alfa4beta1/metabolismo , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
15.
Mol Pharm ; 12(2): 542-53, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25536192

RESUMO

A new transplantable ovarian tumor model is presented using a novel folate receptor (FR) positive, murine ovarian cancer cell line that emulates the human disease and induces widespread intraperitoneal (i.p.) tumors in immunocompetent mice within 4-8 weeks of implantation. Tumor development was monitored using a new positron emission tomography (PET) FR-targeting reporter with PET/computerized tomography (PET/CT) and fluorescence molecular tomography (FMT) using a commercial FR-targeting reporter. Conventional structural magnetic resonance imaging (MRI) was also performed. Adult female C57BL/6 mice were injected i.p. with 6 × 10(6) MKP-L FR+ cells. Imaging was performed weekly beginning 2 weeks after tumor induction. The albumin-binding, FR-targeting ligand cm09 was radiolabeled with the positron emitter (68)Ga and used to image the tumors with a small animal PET/CT. The FR-reporter FolateRSense 680 (PerkinElmer) was used for FMT and flow cytometry. Preclinical MRI (7 T) without FR-targeting was compared with the PET and FMT molecular imaging. Tumors were visible by all three imaging modalities. PET/CT had the highest imaging sensitivity at 3-3.5 h postadministration (mean %IA/g mean > 6) and visualized tumors earlier than the other two modalities with lower kidney uptake (mean %IA/g mean < 17) than previously reported FR-targeting agents in late stage disease. FMT showed relatively low FR-targeted agent in the bladder and kidneys, but yielded the lowest anatomical image resolution. MRI produced the highest resolution images, but it was difficult to distinguish tumors from abdominal organs during early progression since a FR-targeting MRI reporter was not used. Nevertheless, there was good correlation of imaging biomarkers between the three modalities. Tumors in the mouse ovarian cancer model could be detected using FR-targeted imaging as early as 2 weeks post i.p. injection of tumor cells. An imaging protocol should combine one or more of the modalities, e.g., PET/CT or PET/MRI for optimal tumor detection and delineation from surrounding tissues.


Assuntos
Receptores de Folato com Âncoras de GPI/metabolismo , Imagem Multimodal/métodos , Neoplasias Ovarianas/diagnóstico , Animais , Linhagem Celular Tumoral , Feminino , Imageamento por Ressonância Magnética , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
16.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25060207

RESUMO

The bifunctional chelator and radiometal have been shown to have a direct effect on the pharmacokinetics of somatostatin receptor (SSTR)-targeted imaging agents. We evaluated three Y3-TATE analogues conjugated to NOTA-based chelators for radiolabeling with 64Cu and 68Ga for small-animal positron emission tomographic/computed tomographic (PET/CT) imaging. Two commercially available NOTA analogues, p-SCN-Bn-NOTA and NODAGA, were evaluated. The p-SCN-Bn-NOTA analogues were conjugated to Y3-TATE through ß-Ala and PEG8 linkages. The NODAGA chelator was directly conjugated to Y3-TATE. The analogues labeled with 64Cu or 68Ga were analyzed in vitro for binding affinity and internalization and in vivo by PET/CT imaging, biodistribution, and Cerenkov imaging (68Ga analogues). We evaluated the effects of the radiometals, chelators, and linkers on the performance of the SSTR subtype 2--targeted imaging agents and also compared them to a previously reported agent, 64Cu-CB-TE2A-Y3-TATE. We found that the method of conjugation, particularly the length of the linkage between the chelator and the peptide, significantly impacted tumor and nontarget tissue uptake and clearance. Among the 64Cu- and 68Ga-labeled NOTA analogues, NODAGA-Y3-TATE had the most optimal in vivo behavior and was comparable to 64Cu-CB-TE2A-Y3-TATE. An advantage of NODAGA-Y3-TATE is that it allows labeling with 64Cu and 68Ga, providing a versatile PET probe for imaging SSTr subtype 2-positive tumors.


Assuntos
Quelantes/metabolismo , Neoplasias Colorretais/diagnóstico por imagem , Radioisótopos de Cobre/farmacocinética , Radioisótopos de Gálio/farmacocinética , Peptídeos Cíclicos/metabolismo , Somatostatina/agonistas , Acetatos/metabolismo , Animais , Feminino , Células HCT116 , Compostos Heterocíclicos/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão
17.
J Biol Inorg Chem ; 19(3): 427-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445997

RESUMO

Owing to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none have been identified that traffic copper to the nucleus. Copper-64 decays by ß (+) and ß (-) emission, allowing positron emission tomography and targeted radionuclide therapy for cancer. Because the delivery of (64)Cu to the cell nucleus may enhance the therapeutic effect of copper radiopharmaceuticals, elucidation of the pathway(s) involved in transporting copper to the tumor cell nucleus is important for optimizing treatment. We identified Atox1 as one of the proteins that binds copper in the nucleus. Mouse embryonic fibroblast cells, positive and negative for Atox1, were used to determine the role of Atox1 in (64)Cu transport to the nucleus. Mouse embryonic fibroblast Atox1(+/+) cells accumulated more (64)Cu in the nucleus than did Atox1(-/-) cells. HCT 116 colorectal cancer cells expressing p53 (+/+) and not expressing p53 (-/-) were used to evaluate the role of this tumor suppressor protein in (64)Cu transport. In cells treated with cisplatin, the uptake of (64)Cu in the nucleus of HCT 116 p53(+/+) cells was greater than that in HCT 116 p53(-/-) cells. Atox1 expression increased in HCT 116 p53(+/+) and p53(-/-) cells treated with cisplatin; however, Atox1 localized to the nuclei of p53(+/+) cells more than in the p53(-/-) cells. The data presented here indicate that Atox1 is involved in copper transport to the nucleus, and cisplatin affects nuclear transport of (64)Cu in HCT 116 cells by upregulating the expression and the nuclear localization of Atox1.


Assuntos
Núcleo Celular/metabolismo , Radioisótopos de Cobre/metabolismo , Genes p53/fisiologia , Metalochaperonas/fisiologia , Animais , Proteínas de Transporte de Cobre , Fibroblastos/metabolismo , Células HCT116 , Humanos , Camundongos , Chaperonas Moleculares , Transporte Proteico/fisiologia
18.
Mol Pharm ; 11(11): 3980-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-24720806

RESUMO

Epidermal growth-factor receptor (EGFR) is overexpressed in a wide variety of solid tumors and has served as a well-characterized target for cancer imaging and therapy. Cetuximab was the first mAb targeting EGFR approved by the FDA for the treatment of metastatic colorectal and head and neck cancers. Previous studies showed that (64)Cu (T1/2 = 12.7 h; ß(+) (17.4%)) labeled DOTA-cetuximab showed promise for PET imaging of EGFR-positive tumors; however the in vivo stability of this compound has been questioned. In this study, two recently developed cross-bridged macrocyclic chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to cetuximab using standard NHS coupling procedures and/or strain-promoted azide-alkyne cycloaddition (SPAAC) methodologies. The radiolabeling and in vitro/vivo evaluation of the resulting cetuximab conjugates were compared. Improved Cu-64 labeling efficiency and high specific activity (684 kBq/µg, decay corrected to the end of bombardment) were obtained with the CB-TE1K1P-PEG4-click-cetuximab conjugate. Saturation binding assays indicated that the prepared cetuximab conjugates had comparable affinity (1.32-2.00 nM) in the HCT116 human colorectal tumor cell membranes. In the subsequent in vivo evaluation, (64)Cu-CB-TE1K1P-PEG4-click-cetuximab demonstrated more rapid renal clearance with a higher tumor/nontumor ratio than other (64)Cu-labeled cetuximab conjugates, and it shows the greatest promise for imaging and therapy of EGFR-positive tumors.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais , Quelantes/metabolismo , Radioisótopos de Cobre , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Antineoplásicos/metabolismo , Cetuximab , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Radioisótopos de Cobre/farmacocinética , Feminino , Humanos , Imunoconjugados , Camundongos , Camundongos Nus , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Labelled Comp Radiopharm ; 57(4): 224-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24347474

RESUMO

The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years.


Assuntos
Quelantes/química , Radioisótopos de Cobre/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Animais , Química Click
20.
Cell Metab ; 36(6): 1335-1350.e8, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38701775

RESUMO

Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.


Assuntos
Glutamina , Serina , Rigidez Vascular , Animais , Glutamina/metabolismo , Serina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Humanos , Colágeno/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA