Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 108(5): 844-856, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34036561

RESUMO

PREMISE: Across taxa, vegetative and floral traits that vary along a fast-slow life-history axis are often correlated with leaf functional traits arrayed along the leaf economics spectrum, suggesting a constrained set of adaptive trait combinations. Such broad-scale convergence may arise from genetic constraints imposed by pleiotropy (or tight linkage) within species, or from natural selection alone. Understanding the genetic basis of trait syndromes and their components is key to distinguishing these alternatives and predicting evolution in novel environments. METHODS: We used a line-cross approach and quantitative trait locus (QTL) mapping to characterize the genetic basis of twenty leaf functional/physiological, life history, and floral traits in hybrids between annualized and perennial populations of scarlet monkeyflower (Mimulus cardinalis). RESULTS: We mapped both single and multi-trait QTLs for life history, leaf function and reproductive traits, but found no evidence of genetic co-ordination across categories. A major QTL for three leaf functional traits (thickness, photosynthetic rate, and stomatal resistance) suggests that a simple shift in leaf anatomy may be key to adaptation to seasonally dry habitats. CONCLUSIONS: Our results suggest that the co-ordination of resource-acquisitive leaf physiological traits with a fast life-history and more selfing mating system results from environmental selection rather than functional or genetic constraint. Independent assortment of distinct trait modules, as well as a simple genetic basis to leaf physiological traits associated with drought escape, may facilitate adaptation to changing climates.


Assuntos
Mimulus , Mapeamento Cromossômico , Flores/genética , Mimulus/genética , Fenótipo , Folhas de Planta/genética , Locos de Características Quantitativas/genética
2.
Mol Ecol ; 28(6): 1460-1475, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346101

RESUMO

Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on a tRNA ligase gene (Migut.N02091; RLG1a) exhibiting unprecedented, and fitness-relevant, CNV within an annual population of the yellow monkeyflower Mimulus guttatus. RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate-frequency three-copy variants of RLG1a (trip+; 5/35 = 14%), and trip+ lines exhibited elevated RLG1a expression under multiple conditions. trip+ carriers, in addition to being over-represented in late-flowering and large-flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rare RLG1a variant (high+) that carries 250-300 copies of RLG1a totalling ~5.7 Mb (20-40% of a chromosome). In the progeny of a high+ carrier, Mendelian segregation of diagnostic alleles and qPCR-based copy counts indicate that high+ is a single tandem array unlinked to the single-copy RLG1a locus. In the wild, high+ carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; both p < 0.01), while single-copy individuals were twice as fecund as either CNV type in a lush year (2016: p < 0.005). Our results demonstrate fluctuating selection on CNVs affecting phenological traits in a wild population, suggest that plant tRNA ligases mediate stress-responsive life-history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification.


Assuntos
Variações do Número de Cópias de DNA/genética , Aptidão Genética , Mimulus/genética , RNA Ligase (ATP)/genética , Mapeamento Cromossômico , Genética Populacional , Mimulus/fisiologia , Fenótipo , Locos de Características Quantitativas/genética
3.
Prog Cardiovasc Dis ; 77: 78-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36871888

RESUMO

Despite the emergence of stronger nutritional science over the past two decades, fad diets remain highly popular. However, growing medical evidence has led to the endorsement of healthy eating patterns by medical societies. This thus allows fad diets to be compared to the emerging scientific evidence as to which diets promote or damage health. In this narrative review, the most popular current fad diets are critically analyzed, including low-fat diets, vegan and vegetarian diets, low-carbohydrate diets, ketogenic diets, Paleolithic diets, and intermittent fasting. Each of these diets has some scientific merit, but each has potential deficiencies relative to the findings of nutritional science. This article also presents the common themes that emerge among the dietary guidance of leading health organizations, such as the American Heart Association and the American College of Lifestyle Medicine. While there are important distinctions between dietary recommendations emanating from various medical societies, each recommends eating more unrefined, plant-based foods, while eating fewer highly processed foods and added sugars, and avoiding excessive calorie consumption as an important nutritional strategy for the prevention and management of chronic conditions and promotion of overall health.


Assuntos
Dieta , Humanos , Dieta/efeitos adversos , Dieta Saudável , Dieta Vegetariana , Ingestão de Energia , Comportamento Alimentar , Estados Unidos , Cultura Popular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA