Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(11): 4766-4783, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37437211

RESUMO

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Animais , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cognição , Proteínas dos Microfilamentos/genética
2.
FASEB J ; 31(5): 1953-1963, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122917

RESUMO

Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.-Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits.


Assuntos
Analgésicos Opioides/metabolismo , Rede Nervosa/metabolismo , Receptores Opioides/metabolismo , Medula Espinal/metabolismo , Animais , Masculino , Neuropeptídeos/metabolismo , Dor/metabolismo , Ratos Long-Evans , Receptores Opioides/genética
3.
Cell Mol Life Sci ; 74(24): 4561-4572, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28726057

RESUMO

Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Células HEK293 , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia
4.
Biochim Biophys Acta Gen Subj ; 1861(2): 246-255, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838394

RESUMO

BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE: High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.


Assuntos
Núcleo Caudado/metabolismo , Núcleo Celular/metabolismo , Peptídeos Opioides/metabolismo , Isoformas de Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Dinorfinas/metabolismo , Encefalinas/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Adulto Jovem
5.
Environ Sci Technol ; 51(24): 14114-14123, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172517

RESUMO

Natural chlorination of organic matter is common in soils. The abundance of chlorinated organic compounds frequently exceeds chloride in surface soils, and the ability to chlorinate soil organic matter (SOM) appears widespread among microorganisms. Yet, the environmental control of chlorination is unclear. Laboratory incubations with 36Cl as a Cl tracer were performed to test how combinations of environmental factors, including levels of soil moisture, nitrate, chloride, and labile organic carbon, influenced chlorination of SOM from a boreal forest. Total chlorination was hampered by addition of nitrate or by nitrate in combination with water but enhanced by addition of chloride or most additions including labile organic matter (glucose and maltose). The greatest chlorination was observed after 15 days when nitrate and water were added together with labile organic matter. The effect that labile organic matter strongly stimulated the chlorination rates was confirmed by a second independent experiment showing higher stimulation at increased availability of labile organic matter. Our results highlight cause-effect links between chlorination and the studied environmental variables in podsol soil-with consistent stimulation by labile organic matter that did overrule the negative effects of nitrate.


Assuntos
Halogenação , Solo , Carbono , Cloro , Radioisótopos
6.
Eur J Mass Spectrom (Chichester) ; 23(3): 105-115, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28657437

RESUMO

Spinal cord as a connection between brain and peripheral nervous system is an essential material for studying neural transmission, especially in pain-related research. This study was the first to investigate pain-related neuropeptide distribution in rat spinal cord using a matrix-assisted laser desorption ionization-time of flight imaging mass spectrometry (MALDI TOF MS) approach. The imaging workflow was evaluated and showed that MALDI TOF MS provides efficient resolution and robustness for neuropeptide imaging in rat spinal cord tissue. The imaging result showed that in naive rat spinal cord the molecular distribution of haeme, phosphatidylcholine, substance P and thymosin beta 4 were well in line with histological features. Three groups of pain-related neuropeptides, which are cleaved from prodynorphin, proenkephalin and protachykinin-1 proteins were detected. All these neuropeptides were found predominantly localized in the dorsal spinal cord and each group had unique distribution pattern. This study set the stage for future MALDI TOF MS application to elucidate signalling mechanism of pain-related diseases in small animal models.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Neuropeptídeos/metabolismo , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Medula Espinal/anatomia & histologia , Distribuição Tecidual
7.
Analyst ; 141(12): 3686-95, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26859000

RESUMO

Small molecule neurotransmitters are essential for the function of the nervous system, and neurotransmitter imbalances are often connected to neurological disorders. The ability to quantify such imbalances is important to provide insights into the biochemical mechanisms underlying the disorder. This proof-of-principle study presents online quantification of small molecule neurotransmitters, specifically acetylcholine, γ-aminobutyric acid (GABA) and glutamate, in rat brain tissue sections using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging. By incorporating deuterated internal standards in the nano-DESI solvent we show identification, accurate mapping, and quantification of these small neurotransmitters in rat brain tissue without introducing any additional sample preparation steps. We find that GABA is about twice as abundant in the medial septum-diagonal band complex (MSDB) as in the cortex, while glutamate is about twice as abundant in the cortex as compared to the MSDB. The study shows that nano-DESI is well suited for imaging of small molecule neurotransmitters in health and disease.


Assuntos
Química Encefálica , Encéfalo/diagnóstico por imagem , Neurotransmissores/análise , Espectrometria de Massas por Ionização por Electrospray , Acetilcolina/análise , Animais , Feminino , Ácido Glutâmico/análise , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Ácido gama-Aminobutírico/análise
8.
Mol Cell Proteomics ; 13(1): 93-104, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24126143

RESUMO

Many pathological processes are not directly correlated to dramatic alterations in protein levels. The changes in local concentrations of important proteins in a subset of cells or at specific loci are likely to play a significant role in disease etiologies, but the precise location might be unknown, or the concentration might be too small to be adequately sampled for traditional proteomic techniques. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a unique analytical method that combines analysis of multiple molecular species and of their distribution in a single platform. As reproducibility is essential for successful biomarker discovery, it is important to systematically assess data quality in biologically relevant MALDI IMS experiments. In the present study, we applied four simple tools to study the reproducibility for individual sections, within-group variation, and between-group variation of data acquired from brain sections of 21 animals divided into three treatment groups. We also characterized protein changes in distinct regions of the striatum from six-month-old rats treated neonatally (postnatal days 9-10) with the cyanobacterial toxin ß-N-methylamino-l-alanine (BMAA), which has been implicated in neurodegenerative diseases. The results showed that optimized experimental settings can yield high-quality MALDI IMS data with relatively low variation (14% to 15% coefficient of variance) that allow the characterization of subtle changes in protein expression in various subregions of the brain. This was further exemplified by the dose-dependent reduction of myelin basic protein in the caudate putamen and the nucleus accumbens of adult rats neonatally treated with BMAA (150 and 460 mg/kg). The reduction in myelin basic protein was confirmed through immunohistochemistry and indicates that developmental exposure to BMAA may induce structural effects on axonal growth and/or directly on the proliferation of oligodendrocytes and myelination, which might be important for the previously shown BMAA-induced long-term cognitive impairments.


Assuntos
Diamino Aminoácidos/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Proteína Básica da Mielina/biossíntese , Proteômica , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Toxinas de Cianobactérias , Humanos , Espectrometria de Massas , Proteína Básica da Mielina/metabolismo , Doenças Neurodegenerativas , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
BMC Med Imaging ; 15: 42, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459634

RESUMO

BACKGROUND: Although it is well known that renal artery stenosis may cause renovascular hypertension, it is unclear how the degree of stenosis should best be measured in morphological images. The aim of this study was to determine which morphological measures from Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography (MRA) are best in predicting whether a renal artery stenosis is hemodynamically significant or not. METHODS: Forty-seven patients with hypertension and a clinical suspicion of renovascular hypertension were examined with CTA, MRA, captopril-enhanced renography (CER) and captopril test (Ctest). CTA and MRA images of the renal arteries were analyzed by two readers using interactive vessel segmentation software. The measures included minimum diameter, minimum area, diameter reduction and area reduction. In addition, two radiologists visually judged the diameter reduction without automated segmentation. The results were then compared using limits of agreement and intra-class correlation, and correlated with the results from CER combined with Ctest (which were used as standard of reference) using receiver operating characteristics (ROC) analysis. RESULTS: A total of 68 kidneys had all three investigations (CTA, MRA and CER + Ctest), where 11 kidneys (16.2 %) got a positive result on the CER + Ctest. The greatest area under ROC curve (AUROC) was found for the area reduction on MRA, with a value of 0.91 (95 % confidence interval 0.82-0.99), excluding accessory renal arteries. As comparison, the AUROC for the radiologists' visual assessments on CTA and MRA were 0.90 (0.82-0.98) and 0.91 (0.83-0.99) respectively. None of the differences were statistically significant. CONCLUSIONS: No significant differences were found between the morphological measures in their ability to predict hemodynamically significant stenosis, but a tendency of MRA having higher AUROC than CTA. There was no significant difference between measurements made by the radiologists and measurements made with fuzzy connectedness segmentation. Further studies are required to definitely identify the optimal measurement approach.


Assuntos
Hipertensão Renovascular/diagnóstico , Hipertensão/complicações , Angiografia por Ressonância Magnética/métodos , Renografia por Radioisótopo/métodos , Obstrução da Artéria Renal/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Área Sob a Curva , Feminino , Lógica Fuzzy , Hemodinâmica , Humanos , Masculino , Curva ROC , Estudos Retrospectivos
10.
J Neurochem ; 124(5): 695-707, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22994484

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressing disease of the central nervous system that is characterized by motor neuron degeneration in the brainstem and the spinal cord. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry is an emerging powerful technique that allows for spatially resolved, comprehensive, and specific characterization of molecular species in situ. In this study, we report for the first time the MALDI imaging-based spatial protein profiling and relative quantification of post-mortem human spinal cord samples obtained from ALS patients and controls. In normal spinal cord, protein distribution patterns were well in line with histological features. For example, thymosin beta 4, ubiquitin, histone proteins, acyl-CoA-binding protein, and macrophage inhibitory factor were predominantly localized to the gray matter. Furthermore, unsupervised statistics revealed a significant reduction of two protein species in ALS gray matter. One of these proteins (m/z 8451) corresponds to an endogenous truncated form of ubiquitin (Ubc 1-76), with both C-terminal glycine residues removed (Ubc-T/Ubc 1-74). This region-specific ubiquitin processing suggests a disease-related change in protease activity. These results highlight the importance of MALDI mass spectrometry as a versatile approach to elucidate molecular mechanisms of neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neuroimagem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Medula Espinal/patologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Western Blotting , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
11.
Mol Cell Proteomics ; 10(10): M111.009308, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737418

RESUMO

Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between L-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's disease, but to date the endogenous prodynorphin peptide products have not been determined. Here, matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) was used for characterization, localization, and relative quantification of striatal neuropeptides in a rat model of LID in Parkinson's disease. MALDI IMS has the unique advantage of high sensitivity and high molecular specificity, allowing comprehensive detection of multiple molecular species in a single tissue section. Indeed, several dynorphins and enkephalins could be detected in the present study, including dynorphin A(1-8), dynorphin B, α-neoendorphin, MetEnkRF, MetEnkRGL, PEnk (198-209, 219-229). IMS analysis revealed elevated levels of dynorphin B, α-neoendorphin, substance P, and PEnk (220-229) in the dorsolateral striatum of high-dyskinetic animals compared with low-dyskinetic and lesion-only control rats. Furthermore, the peak-intensities of the prodynorphin derived peptides, dynorphin B and α-neoendorphin, were strongly and positively correlated with LID severity. Interestingly, these LID associated dynorphin peptides are not those with high affinity to κ opioid receptors, but are known to bind and activate also µ- and Δ-opioid receptors. In addition, the peak intensities of a novel endogenous metabolite of α-neoendorphin lacking the N-terminal tyrosine correlated positively with dyskinesia severity. MALDI IMS of striatal sections from Pdyn knockout mice verified the identity of fully processed dynorphin peptides and the presence of endogenous des-tyrosine α-neoendorphin. Des-tyrosine dynorphins display reduced opioid receptor binding and this points to possible novel nonopioid receptor mediated changes in the striatum of dyskinetic rats. Because des-tyrosine dynorphins can only be detected by mass spectrometry, as no antibodies are available, these findings highlight the importance of MALDI IMS analysis for the study of molecular dynamics in neurological diseases.


Assuntos
Antiparkinsonianos/efeitos adversos , Dinorfinas/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Animais , Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Dinorfinas/análise , Encefalinas/análise , Encefalinas/genética , Encefalinas/metabolismo , Feminino , Humanos , Levodopa/uso terapêutico , Camundongos , Neostriado/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Nat Commun ; 14(1): 7702, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057330

RESUMO

Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Edição de Genes , Virulência , Transtornos do Neurodesenvolvimento/genética , Neoplasias/genética , Células Germinativas , Mutação em Linhagem Germinativa , RNA Helicases DEAD-box/genética
13.
Front Cell Dev Biol ; 10: 1023340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684426

RESUMO

Efficient and effective methods for converting human induced pluripotent stem cells into differentiated derivatives are critical for performing robust, large-scale studies of development and disease modelling, and for providing a source of cells for regenerative medicine. Here, we describe a 14-day neural differentiation protocol which allows for the scalable, simultaneous differentiation of multiple iPSC lines into cortical neural stem cells We currently employ this protocol to differentiate and compare sets of engineered iPSC lines carrying loss of function alleles in developmental disorder associated genes, alongside isogenic wildtype controls. Using RNA sequencing (RNA-Seq), we can examine the changes in gene expression brought about by each disease gene knockout, to determine its impact on neural development and explore mechanisms of disease. The 10-day Neural Induction period uses the well established dual-SMAD inhibition approach combined with Wnt/ß-Catenin inhibition to selectively induce formation of cortical NSCs. This is followed by a 4-day Neural Maintenance period facilitating NSC expansion and rosette formation, and NSC cryopreservation. We also describe methods for thawing and passaging the cryopreserved NSCs, which are useful in confirming their viability for further culture. Routine implementation of immunocytochemistry Quality Control confirms the presence of PAX6-positive and/or FOXG1-positive NSCs and the absence of OCT4-positive iPSCs after differentiation. RNA-Seq, flow cytometry, immunocytochemistry (ICC) and RT-qPCR provide additional confirmation of robust presence of NSC markers in the differentiated cells. The broader utility and application of our protocol is demonstrated by the successful differentiation of wildtype iPSC lines from five additional independent donors. This paper thereby describes an efficient method for the production of large numbers of high purity cortical NSCs, which are widely applicable for downstream research into developmental mechanisms, further differentiation into postmitotic cortical neurons, or other applications such as large-scale drug screening experiments.

14.
Nat Methods ; 5(1): 101-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18165806

RESUMO

As large genomic and proteomic datasets are generated from homogenates of various tissues, the need for information on the spatial localization of their encoded products has become more pressing. Matrix-assisted laser desorption-ionization (MALDI) imaging mass spectrometry (IMS) offers investigators the means with which to unambiguously study peptides and proteins with molecular specificity, and to determine their distribution in two and three dimensions. In the past few years, several parameters have been optimized for IMS, including sample preparation, matrix application and instrumental acquisition parameters (Box 1). These developments have resulted in a high degree of reproducibility in mass accuracy and peak intensities (Supplementary Fig. 1 online). Recently, we have optimized our protocol to be able to increase the number of molecular species analyzed by collecting two sets of sections, covering one set of sections with sinapinic acid for optimal detection of proteins and adjacent sections with 2,5-dihydroxybenzoic acid (DHB) matrix for the optimal detection of low-mass species, including peptides. Approximately 1,000 peaks can be observed in each dataset (Fig. 1). Furthermore, the sections are collected at an equal distance, 200 mum instead of 400-500 mum used previously, thus enabling the use of virtual z-stacks and three-dimensional (3D) volume renderings to investigate differential localization patterns in much smaller brain structures such as the substantia nigra and the interpeduncular nucleus. Here we present our optimized step-by-step procedure based on previous work in our laboratory, describing how to make 3D volume reconstructions of MALDI IMS data, as applied to the rat brain.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Integração de Sistemas
15.
Anal Bioanal Chem ; 401(1): 135-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21553124

RESUMO

The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different stimulations. Glial cells were separated into pure astroglial, microglial, and oligodendroglial cell cultures. The intact cell suspensions were then analyzed directly by MALDI-TOF-MS, resulting in characteristic mass spectra profiles that discriminated glial cell types using principal component analysis. Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of different cell types with molecular specificity.


Assuntos
Encéfalo/citologia , Neuroglia/química , Neuroglia/citologia , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/ultraestrutura , Células Cultivadas , Histonas/análise , Neuroglia/ultraestrutura , Proteômica/métodos , Ratos , Ratos Sprague-Dawley
16.
Toxicology ; 461: 152922, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34474092

RESUMO

Glyphosate, the most used herbicide worldwide, has been suggested to induce neurotoxicity and behavioral changes in rats after developmental exposure. Studies of human glyphosate intoxication have reported adverse effects on the nervous system, particularly in substantia nigra (SN). Here we used matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to study persistent changes in peptide expression in the SN of 90-day-old adult male Wistar rats. The animals were perinatally exposed to 3 % GBH (glyphosate-based herbicide) in drinking water (corresponding to 0.36 % of glyphosate) starting at gestational day 5 and continued up to postnatal day 15 (PND15). Peptides are present in the central nervous system before birth and play a critical role in the development and survival of neurons, therefore, observed neuropeptide changes could provide better understanding of the GBH-induced long term effects on SN. The results revealed 188 significantly altered mass peaks in SN of animals perinatally exposed to GBH. A significant reduction of the peak intensity (P < 0.05) of several peptides from the opioid-related dynorphin family such as dynorphin B (57 %), alpha-neoendorphin (50 %), and its endogenous metabolite des-tyrosine alpha-neoendorphin (39 %) was detected in the GBH group. Immunohistochemical analysis confirmed a decreased dynorphin expression and showed a reduction of the total area of dynorphin immunoreactive fibers in the SN of the GBH group. In addition, a small reduction of dynorphin immunoreactivity associated with non-neuronal cells was seen in the hilus of the hippocampal dentate gyrus. Perinatal exposure to GBH also induced an increase in the number of nestin-positive cells in the subgranular zone of the dentate gyrus. In conclusion, the results demonstrate long-term changes in the adult male rat SN and hippocampus following a perinatal GBH exposure suggesting that this glyphosate-based formulation may perturb critical neurodevelopmental processes.


Assuntos
Dinorfinas/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidade , Síndromes Neurotóxicas/etiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Glicina/administração & dosagem , Glicina/toxicidade , Herbicidas/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Síndromes Neurotóxicas/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glifosato
17.
PLoS One ; 16(2): e0246786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556141

RESUMO

BACKGROUND: Cerebral injury is a common cause of maternal mortality due to preeclampsia and is challenging to predict and diagnose. In addition, there are associations between previous preeclampsia and stroke, dementia and epilepsy later in life. The cerebral biomarkers S100B, neuron specific enolase, (NSE), tau protein and neurofilament light chain (NfL) have proven useful as predictors and diagnostic tools in other neurological disorders. This case-control study sought to determine whether cerebral biomarkers were increased in cerebrospinal fluid (CSF) as a marker of cerebral origin and potential cerebral injury in preeclampsia and if concentrations in CSF correlated to concentrations in plasma. METHODS: CSF and blood at delivery from 15 women with preeclampsia and 15 women with normal pregnancies were analysed for the cerebral biomarkers S100B, NSE, tau protein and NfL by Simoa and ELISA based methods. MRI brain was performed after delivery and for women with preeclampsia also at six months postpartum. RESULTS: Women with preeclampsia demonstrated increased CSF- and plasma concentrations of NfL and these concentrations correlated to each other. CSF concentrations of NSE and tau were decreased in preeclampsia and there were no differences in plasma concentrations of NSE and tau between groups. For S100B, serum concentrations in preeclampsia were increased but there was no difference in CSF concentrations of S100B between women with preeclampsia and normal pregnancy. CONCLUSION: NfL emerges as a promising circulating cerebral biomarker in preeclampsia and increased CSF concentrations point to a neuroaxonal injury in preeclampsia, even in the absence of clinically evident neurological complications.


Assuntos
Axônios/metabolismo , Encefalopatias/líquido cefalorraquidiano , Pré-Eclâmpsia/líquido cefalorraquidiano , Subunidade beta da Proteína Ligante de Cálcio S100/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Encefalopatias/etiologia , Estudos de Casos e Controles , Feminino , Humanos , Pré-Eclâmpsia/patologia , Gravidez
18.
BMJ Open ; 11(11): e049559, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819281

RESUMO

INTRODUCTION: Pre-eclampsia, a multisystem disorder in pregnancy, is one of the most common causes of maternal morbidity and mortality worldwide. However, we lack methods for objective assessment of organ function in pre-eclampsia and predictors of organ impairment during and after pre-eclampsia. The women's and their partners' experiences of pre-eclampsia have not been studied in detail. To phenotype different subtypes of the disorder is of importance for prediction, prevention, surveillance, treatment and follow-up of pre-eclampsia.The aim of this study is to set up a multicentre database and biobank for pre-eclampsia in order to contribute to a safer and more individualised treatment and care. METHODS AND ANALYSIS: This is a multicentre cohort study. Prospectively recruited pregnant women ≥18 years, diagnosed with pre-eclampsia presenting at Sahlgrenska University Hospital, Uppsala University Hospital and at Södra Älvsborgs Hospital, Sweden, as well as normotensive controls are eligible for participation. At inclusion and at 1-year follow-up, the participants donate biosamples that are stored in a biobank and they are also asked to participate in various organ-specific evaluations. In addition, questionnaires and interviews regarding the women's and partner's experiences are distributed at follow-up. ETHICS AND DISSEMINATION: By creating a database and biobank, we will provide the means to explore the disorder in a broader sense and allow clinical and laboratory discoveries that can be translated to clinical trials aiming at improved care of women with pre-eclampsia. Further, to evaluate experiences and the psychological impact of being affected by pre-eclampsia can improve the care of pregnant women and their partners. In case of incidental pathological findings during examinations performed, they will be handled in accordance with clinical routine. Data are stored in a secure online database. Biobank samples are identified through the women's personal identification number and pseudonymised after identification in the biobank before analysis.This study was approved by the regional ethical review board in Gothenburg on 28 December 2018 (approval number 955-18) and by the Swedish Ethical Review Authority on 27 February 2019 (approval number 2019-00309).Results from the study will be published in international peer-reviewed journals. TRIAL REGISTRATION NUMBER: ISRCTN13060768.


Assuntos
Pré-Eclâmpsia , Bancos de Espécimes Biológicos , Estudos Clínicos como Assunto , Estudos de Coortes , Feminino , Humanos , Estudos Multicêntricos como Assunto , Pré-Eclâmpsia/diagnóstico , Gravidez , Estudos Prospectivos , Suécia
19.
Nat Genet ; 53(3): 304-312, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33664506

RESUMO

Studying the function of common genetic variants in primary human tissues and during development is challenging. To address this, we use an efficient multiplexing strategy to differentiate 215 human induced pluripotent stem cell (iPSC) lines toward a midbrain neural fate, including dopaminergic neurons, and use single-cell RNA sequencing (scRNA-seq) to profile over 1 million cells across three differentiation time points. The proportion of neurons produced by each cell line is highly reproducible and is predictable by robust molecular markers expressed in pluripotent cells. Expression quantitative trait loci (eQTL) were characterized at different stages of neuronal development and in response to rotenone-induced oxidative stress. Of these, 1,284 eQTL colocalize with known neurological trait risk loci, and 46% are not found in the Genotype-Tissue Expression (GTEx) catalog. Our study illustrates how coupling scRNA-seq with long-term iPSC differentiation enables mechanistic studies of human trait-associated genetic variants in otherwise inaccessible cell states.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Locos de Características Quantitativas , Transcriptoma , Diferenciação Celular/genética , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurogênese/genética , Estresse Oxidativo/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Rotenona/toxicidade , Análise de Sequência de RNA , Análise de Célula Única
20.
Sci Total Environ ; 393(2-3): 191-7, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18262598

RESUMO

Production of wood ash has increased strongly in the last ten years due to the increasing popularity of renewable and CO(2)-neutral heat and energy production via wood burning. Wood ashes are rich in many essential plant nutrients. In addition they are alkaline. The idea of using the waste ash as fertiliser in forests is appealing. However, wood is also known for its ability to strongly enrich certain heavy metals from the underlying soils, e.g. Cd, without any anthropogenic input. Concentrations of 26 chemical elements (Ag, As, Au, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) in 40 samples each of birch and spruce wood ashes collected along a 120 km long transect in southern Norway are reported. The observed maximum concentrations are 1.3 wt.% Pb, 4.4 wt.% Zn and 203 mg/kg Cd in birch wood ashes. Wood ashes can thus contain very high heavy metal concentrations. Spreading wood ashes in a forest is a major anthropogenic interference with the natural biogeochemical cycles. As with the use of sewage sludge in agriculture the use of wood ashes in forests clearly needs regulation.


Assuntos
Betula , Metais/análise , Picea , Arsênio/análise , Boro/análise , Monitoramento Ambiental , Fertilizantes , Noruega , Fósforo/análise , Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA