Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 309, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926376

RESUMO

BACKGROUND: Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. RESULTS: Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40-50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. CONCLUSIONS: Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Ciclo Celular/genética , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , RNA-Seq
2.
Proc Natl Acad Sci U S A ; 115(21): 5606-5611, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735680

RESUMO

Heterosis is widely applied in agriculture; however, the underlying molecular mechanisms for superior performance are not well understood. Ethylene biosynthesis and signaling genes are shown to be down-regulated in Arabidopsis interspecific hybrids. Ethylene is a plant hormone that promotes fruit ripening and maturation but inhibits hypocotyl elongation. Here we report that application of exogenous ethylene could eliminate biomass vigor in Arabidopsis thaliana F1 hybrids, suggesting a negative role of ethylene in heterosis. Ethylene biosynthesis is mediated by the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthase (ACS). Down-regulation of ACS genes led to the decrease of ethylene production, which was associated with the high-vigor F1 hybrids, but not with the low-vigor ones. At the mechanistic level, expression of ACS genes was down-regulated diurnally and indirectly by Circadian Clock Associated 1 (CCA1) during the day and directly by Phyotochrome-Interacting Factor 5 (PIF5) at night. Consistent with the negative role of ethylene in plant growth, biomass vigor was higher in the acs mutants than in wild-type plants, while increasing endogenous ethylene production in the hybridizing parents reduced growth vigor in the hybrids. Thus, integrating circadian rhythms and light signaling into ethylene production is another regulatory module of complex biological networks, leading to biomass heterosis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biomassa , Ritmo Circadiano , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética
3.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282525

RESUMO

Seed size is related to plant evolution and crop yield and is affected by genetic mutations, imprinting, and genome dosage. Imprinting is a widespread epigenetic phenomenon in mammals and flowering plants. ETHYLENE INSENSITIVE2 (EIN2) encodes a membrane protein that links the ethylene perception to transcriptional regulation. Interestingly, during seed development EIN2 is maternally expressed in Arabidopsis and maize, but the role of EIN2 in seed development is unknown. Here, we show that EIN2 is expressed specifically in the endosperm, and the maternal-specific EIN2 expression affects temporal regulation of endosperm cellularization. As a result, seed size increases in the genetic cross using the ein2 mutant as the maternal parent or in the ein2 mutant. The maternal-specific expression of EIN2 in the endosperm is controlled by DNA methylation but not by H3K27me3 or by ethylene and several ethylene pathway genes tested. RNA-seq analysis in the endosperm isolated by laser-capture microdissection show upregulation of many endosperm-expressed genes such as AGAMOUS-LIKEs (AGLs) in the ein2 mutant or when the maternal EIN2 allele is not expressed. EIN2 does not interact with DNA and may act through ETHYLENE INSENSITIVE3 (EIN3), a DNA-binding protein present in sporophytic tissues, to activate target genes like AGLs, which in turn mediate temporal regulation of endosperm cellularization and seed size. These results provide mechanistic insights into endosperm and maternal-specific expression of EIN2 on endosperm cellularization and seed development, which could help improve seed production in plants and crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Impressão Genômica , Etilenos/metabolismo , Receptores de Superfície Celular/metabolismo
4.
Genome Biol ; 21(1): 178, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698836

RESUMO

BACKGROUND: Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS: To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS: Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.


Assuntos
Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Ploidias , Transcriptoma , Arabidopsis/genética , Análise de Sequência de RNA , Análise de Célula Única
5.
Nat Genet ; 52(5): 525-533, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313247

RESUMO

Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Fibra de Algodão , Domesticação , Epigenômica/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Filogenia , Poliploidia
6.
Genome Biol ; 20(1): 170, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429787

RESUMO

BACKGROUND: Circadian rhythms modulate growth and development in all organisms through interlocking transcriptional-translational feedback loops. The transcriptional loop involves chromatin modifications of central circadian oscillators in mammals and plants. However, the molecular basis for rhythmic epigenetic modifications and circadian regulation is poorly understood. RESULTS: Here we report a feedback relationship between diurnal regulation of circadian clock genes and histone modifications in Arabidopsis. On one hand, the circadian oscillators CCA1 and LHY regulate diurnal expression of genes coding for the eraser (JMJ14) directly and writer (SDG2) indirectly for H3K4me3 modification, leading to rhythmic H3K4me3 changes in target genes. On the other hand, expression of circadian oscillator genes including CCA1 and LHY is associated with H3K4me3 levels and decreased in the sdg2 mutant but increased in the jmj14 mutant. At the genome-wide level, diurnal rhythms of H3K4me3 and another histone mark H3K9ac are associated with diurnal regulation of 20-30% of the expressed genes. While the majority (86%) of H3K4me3 and H3K9ac target genes overlap, only 13% of morning-phased and 22% of evening-phased genes had both H3K4me3 and H3K9ac peaks, suggesting specific roles of different histone modifications in diurnal gene expression. CONCLUSIONS: Circadian clock genes promote diurnal regulation of SDG2 and JMJ14 expression, which in turn regulate rhythmic histone modification dynamics for the clock and its output genes. This reciprocal regulatory module between chromatin modifiers and circadian clock oscillators orchestrates diurnal gene expression that governs plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Arabidopsis/genética , Histona-Lisina N-Metiltransferase/genética , Modelos Biológicos , Processamento de Proteína Pós-Traducional
7.
Sci Rep ; 7(1): 15274, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127298

RESUMO

Like those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches. Here we report the development of BAC libraries, sub genome specific physical maps, and a new-generation sequencing approach that will lead to a reference-grade genome assembly for Upland cotton. Three BAC libraries were constructed, fingerprinted, and integrated with BAC-end sequences (BES) to produce a de novo whole-genome physical map. The BAC map was partitioned by sub genomes through alignment to the diploid progenitor D-genome reference sequence with densely spaced BES anchor points and computational filtering. The physical maps were validated with FISH and genetic mapping of SNP markers derived from BES. Two pairs of homeologous chromosomes, A11/D11 and A12/D12, were used to assess multiplex sequencing approaches for completeness and scalability. The results represent the first sub genome anchored physical maps of Upland cotton, and a new-generation approach to the whole-genome sequencing, which will lead to the reference-grade assembly of allopolyploid cotton and serve as a general strategy for sequencing other polyploid species.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Genoma de Planta , Gossypium/genética , Poliploidia , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA