Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 120(1): 269-287, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31869216

RESUMO

The prospect of self-propelled artificial machines small enough to navigate within biological matter has fascinated and inspired researchers and the public alike since the dawn of nanotechnology. Despite many obstacles toward the realization of such devices, impressive progress on the development of its basic building block, the nanomotor, has been made over the past decade. Here, we review this emerging area with a focus on inorganic nanomotors driven or activated by light. We outline the distinct challenges and opportunities that differentiate nanomotors from micromotors based on a discussion of how stochastic forces influence the active motion of small particles. We introduce the relevant light-matter interactions and discuss how these can be utilized to classify nanomotors into three broad classes: nanomotors driven by optical momentum transfer, photothermal heating, and photocatalysis, respectively. On the basis of this classification, we then summarize and discuss the diverse body of nanomotor literature. We finally give a brief outlook on future challenges and possibilities in this rapidly evolving research area.

2.
Nano Lett ; 19(11): 8294-8302, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31647867

RESUMO

Thermo-optically generated bubbles in water provide a powerful means for active matter control in microfluidic environments. These bubbles are often formed via continuous-wave illumination of an absorbing medium resulting in bubble nucleation via vaporization of water and subsequent bubble growth from the inward diffusion of gas molecules. However, to date, such bubbles tend to be several microns in diameter, resulting in slow dissipation. This limits the dynamic rate, spatial precision, and throughput of operation in any application. Here we show that isolated plasmonic structures can be utilized as highly localized heating elements to generate thermoplasmonic nanobubbles that can be modulated at frequencies up to several kilohertz in water, orders of magnitude faster than previously demonstrated for microbubbles. The nanobubbles are envisioned as advantageous localized active manipulation elements for high throughput microfluidic applications.

3.
Opt Express ; 27(15): 21069-21082, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510190

RESUMO

Metasurfaces enable us to control the fundamental properties of light with unprecedented flexibility. However, most metasurfaces realized to date aim at modifying plane waves. While the manipulation of nonplanar wavefronts is encountered in a diverse number of applications, their control using metasurfaces is still in its infancy. Here we design a metareflector able to reflect a diverging Gaussian beam back onto itself with efficiency over 90% and focusing at an arbitrary distance. We outline a clear route towards the design of complex metareflectors that can find applications as diverse as optical tweezing, lasing, and quantum optics.

4.
Nat Nanotechnol ; 16(9): 970-974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34294910

RESUMO

Nanostructured dielectric metasurfaces offer unprecedented opportunities to manipulate light by imprinting an arbitrary phase gradient on an impinging wavefront1. This has resulted in the realization of a range of flat analogues to classical optical components, such as lenses, waveplates and axicons2-6. However, the change in linear and angular optical momentum7 associated with phase manipulation also results in previously unexploited forces and torques that act on the metasurface itself. Here we show that these optomechanical effects can be utilized to construct optical metavehicles-microscopic particles that can travel long distances under low-intensity plane-wave illumination while being steered by the polarization of the incident light. We demonstrate movement in complex patterns, self-correcting motion and an application as transport vehicles for microscopic cargoes, which include unicellular organisms. The abundance of possible optical metasurfaces attests to the prospect of developing a wide variety of metavehicles with specialized functional behaviours.


Assuntos
Microscopia , Nanoestruturas/química , Dispositivos Ópticos , Lentes , Luz , Movimento (Física) , Propriedades de Superfície/efeitos da radiação
5.
ACS Nano ; 14(12): 17468-17475, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33290656

RESUMO

The challenge of inducing and controlling localized fluid flows for generic force actuation and for achieving efficient mass transport in microfluidics is key to the development of next-generation miniaturized systems for chemistry and life sciences. Here we demonstrate a methodology for the robust generation and precise quantification of extremely strong flow transients driven by vapor bubble nucleation on spatially isolated plasmonic nanoantennas excited by light. The system is capable of producing peak flow speeds of the order mm/s at modulation rates up to ∼100 Hz in water, thus allowing for a variety of high-throughput applications. Analysis of flow dynamics and fluid viscosity dependence indicates that the transient originates in the rapid bubble expansion that follows nucleation rather than being strictly thermocapillary in nature.

6.
J Vis Exp ; (136)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-30010664

RESUMO

The possibility to generate and measure rotation and torque at the nanoscale is of fundamental interest to the study and application of biological and artificial nanomotors and may provide new routes towards single cell analysis, studies of non-equilibrium thermodynamics, and mechanical actuation of nanoscale systems. A facile way to drive rotation is to use focused circularly polarized laser light in optical tweezers. Using this approach, metallic nanoparticles can be operated as highly efficient scattering-driven rotary motors spinning at unprecedented rotation frequencies in water. In this protocol, we outline the construction and operation of circularly-polarized optical tweezers for nanoparticle rotation and describe the instrumentation needed for recording the Brownian dynamics and Rayleigh scattering of the trapped particle. The rotational motion and the scattering spectra provides independent information on the properties of the nanoparticle and its immediate environment. The experimental platform has proven useful as a nanoscopic gauge of viscosity and local temperature, for tracking morphological changes of nanorods and molecular coatings, and as a transducer and probe of photothermal and thermodynamic processes.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química
7.
ACS Nano ; 11(10): 10053-10061, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28872830

RESUMO

Plasmonic gold nanorods are prime candidates for a variety of biomedical, spectroscopy, data storage, and sensing applications. It was recently shown that gold nanorods optically trapped by a focused circularly polarized laser beam can function as extremely efficient nanoscopic rotary motors. The system holds promise for applications ranging from nanofluidic flow control and nanorobotics to biomolecular actuation and analysis. However, to fully exploit this potential, one needs to be able to control and understand heating effects associated with laser trapping. We investigated photothermal heating of individual rotating gold nanorods by simultaneously probing their localized surface plasmon resonance spectrum and rotational Brownian dynamics over extended periods of time. The data reveal an extremely slow nanoparticle reshaping process, involving migration of the order of a few hundred atoms per minute, for moderate laser powers and a trapping wavelength close to plasmon resonance. The plasmon spectroscopy and Brownian analysis allows for separate temperature estimates based on the refractive index and the viscosity of the water surrounding a trapped nanorod. We show that both measurements yield similar effective temperatures, which correspond to the actual temperature at a distance of the order 10-15 nm from the particle surface. Our results shed light on photothermal processes on the nanoscale and will be useful in evaluating the applicability and performance of nanorod motors and optically heated nanoparticles for a variety of applications.

8.
ACS Nano ; 9(12): 12542-51, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26564095

RESUMO

Efficient and robust artificial nanomotors could provide a variety of exciting possibilities for applications in physics, biology and chemistry, including nanoelectromechanical systems, biochemical sensing, and drug delivery. However, the application of current man-made nanomotors is limited by their sophisticated fabrication techniques, low mechanical output power and severe environmental requirements, making their performance far below that of natural biomotors. Here we show that single-crystal gold nanorods can be rotated extremely fast in aqueous solutions through optical torques dominated by plasmonic resonant scattering of circularly polarized laser light with power as low as a few mW. The nanorods are trapped in 2D against a glass surface, and their rotational dynamics is highly dependent on their surface plasmon resonance properties. They can be kept continuously rotating for hours with limited photothermal side effects and they can be applied for detection of molecular binding with high sensitivity. Because of their biocompatibility, mechanical and thermal stability, and record rotation speeds reaching up to 42 kHz (2.5 million revolutions per minute), these rotary nanomotors could advance technologies to meet a wide range of future nanomechanical and biomedical needs in fields such as nanorobotics, nanosurgery, DNA manipulation and nano/microfluidic flow control.


Assuntos
Ouro/química , Nanotubos/química , Espalhamento de Radiação , Desenho de Equipamento , Luz , Nanotecnologia , Pinças Ópticas , Ressonância de Plasmônio de Superfície/métodos
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(4 Pt 2): 046104, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15169066

RESUMO

An improved method for obtaining the Ising partition function of n x n square grids with periodic boundary is presented. Our method applies results from Galois theory in order to split the computation into smaller parts and at the same time avoid the use of numerics. Using this method we have computed the exact partition function for the (320 x 320) grid, the ( 256 x 256 ) grid, and the ( 160 x 160 ) grid, as well as for a number of smaller grids. We obtain scaling parameters and compare with what theory prescribes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA