Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498576

RESUMO

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Assuntos
Actinas , Perda Auditiva de Alta Frequência , Animais , Camundongos , Actinas/genética , Actinas/metabolismo , Cóclea/metabolismo , Forminas/genética , Estudo de Associação Genômica Ampla , Audição , Camundongos Knockout , Polimerização
2.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R277-R296, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189166

RESUMO

The inner ear of teleost fish regulates the ionic and acid-base chemistry and secretes protein matrix into the endolymph to facilitate otolith biomineralization, which is used to maintain vestibular and auditory functions. The otolith is biomineralized in a concentric ring pattern corresponding to seasonal growth, and this calcium carbonate (CaCO3) polycrystal has become a vital aging and life-history tool for fishery managers, ecologists, and conservation biologists. Moreover, biomineralization patterns are sensitive to environmental variability including climate change, thereby threatening the accuracy and relevance of otolith-reliant toolkits. However, the cellular biology of the inner ear is poorly characterized, which is a hurdle for a mechanistic understanding of the underlying processes. This study provides a systematic characterization of the cell types in the inner ear of splitnose rockfish (Sebastes diploproa). Scanning electron microscopy revealed the apical morphologies of six inner ear cell types. In addition, immunostaining and confocal microscopy characterized the expression and subcellular localization of the proteins Na+-K+-ATPase, carbonic anhydrase, V-type H+-ATPase, Na+-K+-2Cl--cotransporter, otolith matrix protein 1, and otolin-1 in six inner ear cell types bordering the endolymph. This fundamental cytological characterization of the rockfish inner ear epithelium illustrates the intricate physiological processes involved in otolith biomineralization and highlights how greater mechanistic understanding is necessary to predict their multistressor responses to future climate change.


Assuntos
Membrana dos Otólitos , Perciformes , Animais , Membrana dos Otólitos/química , Membrana dos Otólitos/fisiologia , Membrana dos Otólitos/ultraestrutura , Peixes , Células Epiteliais
3.
Nat Methods ; 17(9): 917-921, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778832

RESUMO

The actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are challenging to detect with fluorescence microscopy, making it difficult to determine whether actin filaments are directly associated with specific membranes. To address these limitations, we developed fluorescent-protein-tagged actin nanobodies, termed 'actin chromobodies' (ACs), targeted to organelle membranes to enable high-resolution imaging of sub-organellar actin dynamics.


Assuntos
Citoesqueleto de Actina/fisiologia , Imagem Óptica/métodos , Linhagem Celular , Citoesqueleto , Recuperação de Fluorescência Após Fotodegradação , Imunofluorescência , Humanos , Proteínas Luminescentes , Proteína Vermelha Fluorescente
4.
Gastroenterology ; 159(5): 1866-1881.e8, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717220

RESUMO

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS: We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS: Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS: In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.


Assuntos
Carcinoma Ductal Pancreático/prevenção & controle , Transformação Celular Neoplásica/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Prostaglandina D2/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ceruletídeo , Modelos Animais de Doenças , Metabolismo Energético , Fibrose , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Camundongos Transgênicos , Mutação , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Struct Biol ; 194(2): 139-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26806019

RESUMO

All inner ear organs possess extracellular matrix appendices over the sensory epithelia that are crucial for their proper function. The tectorial membrane (TM) is a gelatinous acellular membrane located above the hearing sensory epithelium and is composed mostly of type II collagen, and α and ß tectorins. TM molecules self-assemble in the endolymph fluid environment, interacting medially with the spiral limbus and distally with the outer hair cell stereocilia. Here, we used immunogold labeling in freeze-substituted mouse cochleae to assess the fine localization of both tectorins in distinct TM regions. We observed that the TM adheres to the spiral limbus through a dense thin matrix enriched in α- and ß-tectorin, both likely bound to the membranes of interdental cells. Freeze-etching images revealed that type II collagen fibrils were crosslinked by short thin filaments (4±1.5nm, width), resembling another collagen type protein, or chains of globular elements (15±3.2nm, diameter). Gold-particles for both tectorins also localized adjacent to the type II collagen fibrils, suggesting that these globules might be composed essentially of α- and ß-tectorins. Finally, the presence of gold-particles at the TM lower side suggests that the outer hair cell stereocilia membrane has a molecular partner to tectorins, probably stereocilin, allowing the physical connection between the TM and the organ of Corti.


Assuntos
Colágeno Tipo II/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Órgão Espiral/metabolismo , Membrana Tectorial/metabolismo , Animais , Colágeno Tipo II/genética , Colágeno Tipo II/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/ultraestrutura , Técnica de Congelamento e Réplica , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/ultraestrutura , Expressão Gênica , Cobaias , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Miosinas/deficiência , Miosinas/genética , Órgão Espiral/ultraestrutura , Ligação Proteica , Ratos , Membrana Tectorial/ultraestrutura
6.
Dev Biol ; 390(1): 51-67, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24583262

RESUMO

Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice.


Assuntos
Orelha Interna/metabolismo , Saco Endolinfático/metabolismo , Efrina-B2/genética , Epitélio/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular/genética , Orelha Interna/embriologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Saco Endolinfático/embriologia , Saco Endolinfático/ultraestrutura , Efrina-B2/metabolismo , Epitélio/embriologia , Epitélio/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Varredura , Morfogênese/genética , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Fatores de Tempo
7.
Development ; 138(8): 1607-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21427143

RESUMO

Protocadherin 15 (PCDH15) is expressed in hair cells of the inner ear and in photoreceptors of the retina. Mutations in PCDH15 cause Usher Syndrome (deaf-blindness) and recessive deafness. In developing hair cells, PCDH15 localizes to extracellular linkages that connect the stereocilia and kinocilium into a bundle and regulate its morphogenesis. In mature hair cells, PCDH15 is a component of tip links, which gate mechanotransduction channels. PCDH15 is expressed in several isoforms differing in their cytoplasmic domains, suggesting that alternative splicing regulates PCDH15 function in hair cells. To test this model, we generated three mouse lines, each of which lacks one out of three prominent PCDH15 isoforms (CD1, CD2 and CD3). Surprisingly, mice lacking PCDH15-CD1 and PCDH15-CD3 form normal hair bundles and tip links and maintain hearing function. Tip links are also present in mice lacking PCDH15-CD2. However, PCDH15-CD2-deficient mice are deaf, lack kinociliary links and have abnormally polarized hair bundles. Planar cell polarity (PCP) proteins are distributed normally in the sensory epithelia of the mutants, suggesting that PCDH15-CD2 acts downstream of PCP components to control polarity. Despite the absence of kinociliary links, vestibular function is surprisingly intact in the PCDH15-CD2 mutants. Our findings reveal an essential role for PCDH15-CD2 in the formation of kinociliary links and hair bundle polarization, and show that several PCDH15 isoforms can function redundantly at tip links.


Assuntos
Processamento Alternativo/fisiologia , Caderinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Precursores de Proteínas/metabolismo , Processamento Alternativo/genética , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Cóclea/citologia , Cóclea/metabolismo , Cóclea/ultraestrutura , Células Ciliadas Auditivas/ultraestrutura , Imuno-Histoquímica , Hibridização In Situ , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Ligação Proteica , Precursores de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Nat Commun ; 15(1): 265, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177161

RESUMO

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.


Assuntos
Actinas , Bainha de Mielina , Animais , Camundongos , Bainha de Mielina/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Oligodendroglia , Axônios/fisiologia
9.
Nat Biotechnol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418648

RESUMO

Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.

10.
J Struct Biol ; 181(2): 162-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23246783

RESUMO

We examined the structure and biomineralization of prismatic magnetosomes in the magnetotactic marine vibrio Magnetovibrio blakemorei strain MV-1 and a non-magnetotactic mutant derived from it, using a combination of cryo-electron tomography and freeze-fracture. The vesicles enveloping the Magnetovibrio magnetosomes were elongated and detached from the cell membrane. Magnetosome crystal formation appeared to be initiated at a nucleation site on the membrane inner surface. Interestingly, while scattered filaments were observed in the surrounding cytoplasm, their association with the magnetosome chains could not be unequivocally established. Our data suggest fundamental differences between prismatic and octahedral magnetosomes in their mechanisms of nucleation and crystal growth as well as in their structural relationships with the cytoplasm and plasma membrane.


Assuntos
Cristalização/métodos , Magnetossomos/fisiologia , Magnetossomos/ultraestrutura , Rhodospirillaceae/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Técnica de Fratura por Congelamento
11.
Dev Biol ; 365(2): 350-62, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22426006

RESUMO

Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-ß-cyclodextrin (MßCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MßCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MßCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.


Assuntos
Padronização Corporal , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Prosencéfalo/embriologia , Animais , Embrião de Galinha , Microdomínios da Membrana/efeitos dos fármacos , Organizadores Embrionários/metabolismo , Xenopus laevis , beta-Ciclodextrinas/farmacologia
12.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993610

RESUMO

Dystrophic axons comprising misfolded mutant prion protein (PrP) aggregates are a characteristic pathological feature in the prionopathies. These aggregates form inside endolysosomes -called endoggresomes-, within swellings that line up the length of axons of degenerating neurons. The pathways impaired by endoggresomes that result in failed axonal and consequently neuronal health, remain undefined. Here, we dissect the local subcellular impairments that occur within individual mutant PrP endoggresome swelling sites in axons. Quantitative high-resolution light and electron microscopy revealed the selective impairment of the acetylated vs tyrosinated microtubule cytoskeleton, while micro-domain image analysis of live organelle dynamics within swelling sites revealed deficits uniquely to the MT-based active transport system that translocates mitochondria and endosomes toward the synapse. Cytoskeletal and defective transport results in the retention of mitochondria, endosomes, and molecular motors at swelling sites, enhancing mitochondria-Rab7 late endosome contacts that induce mitochondrial fission via the activity of Rab7, and render mitochondria dysfunctional. Our findings point to mutant Pr Pendoggresome swelling sites as selective hubs of cytoskeletal deficits and organelle retention that drive the remodeling of organelles along axons. We propose that the dysfunction imparted locally within these axonal micro-domains spreads throughout the axon over time, leading to axonal dysfunction in prionopathies.

13.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090556

RESUMO

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length and thickness are regulated by neuronal activity and can precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation and remodeling is unknown. Here, we used genetic tools to attenuate oligodendrocyte calcium signaling during active myelination in the developing mouse CNS. Surprisingly, we found that genetic calcium attenuation did not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation caused striking myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduced actin filaments in oligodendrocytes, and an intact actin cytoskeleton was necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a novel cellular mechanism required for accurate CNS myelin formation and provides mechanistic insight into how oligodendrocytes may respond to neuronal activity to sculpt myelin sheaths throughout the nervous system.

14.
Front Cell Dev Biol ; 10: 974168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211453

RESUMO

Nuclear positioning is important for the functionality of many cell types and is mediated by interactions of cytoskeletal elements and nucleoskeleton proteins. Nesprin proteins, part of the linker of nucleoskeleton and cytoskeleton (LINC) complex, have been shown to participate in nuclear positioning in multiple cell types. Outer hair cells (OHCs) in the inner ear are specialized sensory epithelial cells that utilize somatic electromotility to amplify auditory signals in the cochlea. Recently, Nesprin-4 (encoded by Syne4) was shown to play a crucial role in nuclear positioning in OHCs. Syne4 deficiency in humans and mice leads to mislocalization of the OHC nuclei and cell death resulting in deafness. However, it is unknown how Nesprin-4 mediates the position of the nucleus, and which other molecular components are involved in this process. Here, we show that the interaction of Nesprin-4 and the microtubule motor kinesin-1 is mediated by a conserved 4 amino-acid motif. Using in vivo AAV gene delivery, we show that this interaction is critical for nuclear positioning and hearing in mice. Nuclear mislocalization and cell death of OHCs coincide with the onset of hearing and electromotility and are solely restricted to outer, but not inner, hair cells. Likewise, the C. elegans functional homolog of Nesprin-4, UNC-83, uses a similar motif to mediate interactions between migrating nuclei and kinesin-1. Overall, our results suggest that OHCs require unique cellular machinery for proper nuclear positioning at the onset of electromotility. This machinery relies on the interaction between Nesprin-4 and kinesin-1 motors supporting a microtubule cargo model for nuclear positioning.

15.
iScience ; 25(8): 104803, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992071

RESUMO

Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.

16.
Biochem Biophys Res Commun ; 413(4): 582-7, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21925146

RESUMO

Connective tissue growth factor (CTGF/CCN2) is a protein of the CCN family that modulates cell-ECM interactions in a variety of cell types. In this study, we investigated the chemotactic and adhesive properties of CCN2 protein in embryonic teratocarcinoma P19 cells. Initially, P19 cells were attracted to CCN2-coated agarose beads. In Boyden chamber experiments, CCN2-containing medium induced a threefold greater migration of P19 cells. CCN2 adhesion properties were studied by using optical tweezers. The specific adhesion times of P19 cells to polystyrene beads coated with laminin, fibronectin, CCN2 and bovine serum albumin were 1.8 ± 0.5s, 2.7 ± 0.4s, 10 ± 2s and 13 ± 2s, respectively, revealing an unexpectedly low adhesive capacity of CCN2 protein for P19 cells. In conclusion, our findings support the chemoattractive role of CCN2 for P19 cells, but not its adhesive role when compared to laminin or fibronectin.


Assuntos
Quimiotaxia , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Células-Tronco de Carcinoma Embrionário/patologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Células-Tronco de Carcinoma Embrionário/metabolismo , Camundongos , Sefarose/química
17.
BMC Plant Biol ; 11: 108, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21689410

RESUMO

BACKGROUND: The translocator protein 18 kDa (TSPO), previously known as the peripheral-type benzodiazepine receptor (PBR), is important for many cellular functions in mammals and bacteria, such as steroid biosynthesis, cellular respiration, cell proliferation, apoptosis, immunomodulation, transport of porphyrins and anions. Arabidopsis thaliana contains a single TSPO/PBR-related gene with a 40 amino acid N-terminal extension compared to its homologs in bacteria or mammals suggesting it might be chloroplast or mitochondrial localized. RESULTS: To test if the TSPO N-terminal extension targets it to organelles, we fused three potential translational start sites in the TSPO cDNA to the N-terminus of GFP (AtTSPO:eGFP). The location of the AtTSPO:eGFP fusion protein was found to depend on the translational start position and the conditions under which plants were grown. Full-length AtTSPO:eGFP fusion protein was found in the endoplasmic reticulum and in vesicles of unknown identity when plants were grown in standard conditions. However, full length AtTSPO:eGFP localized to chloroplasts when grown in the presence of 150 mM NaCl, conditions of salt stress. In contrast, when AtTSPO:eGFP was truncated to the second or third start codon at amino acid position 21 or 42, the fusion protein co-localized with a mitochondrial marker in standard conditions. Using promoter GUS fusions, qRT-PCR, fluorescent protein tagging, and chloroplast fractionation approaches, we demonstrate that AtTSPO levels are regulated at the transcriptional, post-transcriptional and post-translational levels in response to abiotic stress conditions. Salt-responsive genes are increased in a tspo-1 knock-down mutant compared to wild type under conditions of salt stress, while they are decreased when AtTSPO is overexpressed. Mutations in tetrapyrrole biosynthesis genes and the application of chlorophyll or carotenoid biosynthesis inhibitors also affect AtTSPO expression. CONCLUSION: Our data suggest that AtTSPO plays a role in the response of Arabidopsis to high salt stress. Salt stress leads to re-localization of the AtTSPO from the ER to chloroplasts through its N-terminal extension. In addition, our results show that AtTSPO is regulated at the transcriptional level in tetrapyrrole biosynthetic mutants. Thus, we propose that AtTSPO may play a role in transporting tetrapyrrole intermediates during salt stress and other conditions in which tetrapyrrole metabolism is compromised.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Tetrapirróis/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Clorofila/análise , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Vetores Genéticos , Immunoblotting , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Mutagênese Insercional , Fenótipo , Proteínas Recombinantes de Fusão
18.
Oncotarget ; 12(22): 2283-2299, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34733419

RESUMO

Clinical guidelines for oral mucositis (OM) still consist in palliative care. Herein, we summarize cellular and molecular mechanisms of OM ulceration in response to chemical therapies in animal models. We discuss evidenced anti-inflammatory and anti-oxidant drugs which have not been ever used for OM, such as synthetic peptides as well as cell therapy with mesenchymal stem cells; amniotic membranes, mucoadhesive polymers loaded with anti-inflammatory agents and natural or synthetic electrospun. These approaches have been promising to allow the production of drug-loaded membranes, scaffolds for cells encapsulation or guided tissue regeneration.

19.
Sci Adv ; 7(52): eabg3693, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936461

RESUMO

The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.

20.
Aging (Albany NY) ; 13(4): 4747-4777, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33601339

RESUMO

Senescent cells produce chronic inflammation that contributes to the diseases and debilities of aging. How this process is orchestrated in epithelial cells, the origin of human carcinomas, is poorly understood. We used human normal oral keratinocytes (NOKs) to elucidate senescence programs in a prototype primary mucosal epithelial cell that senesces spontaneously. While NOKs exhibit several typical facets of senescence, they also display distinct characteristics. These include expression of p21WAF1/CIP1 at early passages, making this common marker of senescence unreliable in NOKs. Transcriptome analysis by RNA-seq revealed specific commonalities with and differences from cancer cells, explicating the tumor avoidance role of senescence. Repression of DNA repair genes that correlated with downregulation of E2F1 mRNA and protein was observed for two donors; a divergent result was seen for the third. Using proteomic profiling of soluble (non-vesicular) and extracellular vesicle (EV) associated secretions, we propose additions to the senescence associated secretory phenotype, including HSP60, which localizes to the surface of EVs. Finally, EVs from senescent NOKs activate interferon pathway signaling in THP-1 monocytes in a STING-dependent manner and associate with mitochondrial and nuclear DNA. Our results highlight senescence changes in epithelial cells and how they might contribute to chronic inflammation and age-related diseases.


Assuntos
Senescência Celular/fisiologia , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica , Queratinócitos/metabolismo , Mucosa Bucal , Vesículas Extracelulares , Humanos , Análise de Sequência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA