Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482551

RESUMO

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

2.
Front Microbiol ; 9: 2884, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564205

RESUMO

Multiple stressors pose potential risk to aquatic ecosystems and are the main reasons for failing ecological quality standards. However, mechanisms how multiple stressors act on aquatic community structure and functioning are poorly understood. This is especially true for two important stressors types, hydrodynamic alterations and toxicants. Here we perform a mesocosm experiment in hydraulic flumes connected as a bypass to a natural stream to test the interactive effects of both factors on natural (inoculated from streams water) biofilms. Biofilms, i.e., the community of autotrophic and heterotrophic microorganisms and their extracellular polymeric substances (EPS) in association with substratum, are key players in stream functioning. We hypothesized (i) that the tolerance of biofilms toward toxicants (the herbicide Prometryn) decreases with increasing hydraulic stress. As EPS is known as an absorber of chemicals, we hypothesize (ii) that the EPS to cell ratio correlates with both hydraulic stress and herbicide tolerance. Tolerance values were derived from concentration-response assays. Both, the herbicide tolerance and the biovolume of the EPS significantly correlated with the turbulent kinetic energy (TKE), while the diversity of diatoms (the dominant group within the stream biofilms) increased with flow velocity. This indicates that the positive effect of TKE on community tolerance was mediated by turbulence-induced changes in the EPS biovolume. This conclusion was supported by a second experiment, showing decreasing effects of the herbicide to a diatom biofilm (Nitzschia palea) with increasing content of artificial EPS. We conclude that increasing hydrodynamic forces in streams result in an increasing tolerance of microbial communities toward chemical pollution by changes in EPS-mediated bioavailability of toxicants.

3.
Water Res ; 127: 211-222, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29049969

RESUMO

Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural flows.


Assuntos
Biofilmes , Ecossistema , Rios , Biofilmes/crescimento & desenvolvimento , Alemanha , Hidrodinâmica , Rios/microbiologia
4.
Sci Total Environ ; 438: 435-46, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23026150

RESUMO

Dissolved organic matter (DOM) is an important part of the global carbon cycle and significantly influences aquatic ecosystem functions. Recent studies suggest that its amount and composition in freshwaters may be altered by agricultural land use, whereby the influence of preceding in-stream production and processing is not clear. To assess the land use effect on DOM amount and composition for the export from terrestrial to freshwater systems at the land-water interface, we sampled headwater streams draining agricultural and near-pristine catchments (forested and wetland) in the North German plains. To account for spatial and seasonal variation, we conducted a screening of DOM amount (53 sites) and composition (42 sites), and conducted bi-weekly samplings to investigate seasonal variation at eight sites over one year. Concentrations of dissolved organic carbon (DOC) were significantly higher for agricultural and wetland catchments than for forested catchments. Moreover, DOC loads exhibited higher seasonal variation for agricultural and wetland catchments than for forested catchments, which was due to higher variation in discharge. Parallel Factor Analysis revealed that the composition of DOM in agricultural catchments was significantly different from the other studied catchment types, and was characterized by low redox state and high structural complexity. Moreover, a gradient from protein- to humic-like fluorescence significantly separated forested from agricultural and wetland catchments. The contribution of humic-like DOM was strongly and positively related to DOC concentration, suggesting a mechanistic coupling of both. The effects of land use on patterns of DOC concentration and DOM composition were consistent across seasons, implying that land use strongly regulates DOM export. Overall, this study clearly shows the seasonally independent importance of agricultural land use for the amount and composition of DOM fluxes from the terrestrial zone to surface waters. These altered fluxes may affect ecosystem metabolism and health of agricultural headwaters and downstream situated aquatic ecosystems.


Assuntos
Agricultura/métodos , Substâncias Húmicas/análise , Compostos Orgânicos/análise , Rios/química , Análise de Variância , Carbono/metabolismo , Análise Fatorial , Alemanha , Oxirredução , Estações do Ano , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA