Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(27): 10342-10358, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35759456

RESUMO

The presence of lanthanide-tellurite "anti-glass" nanocrystalline phases not only affects the transparency in glass-ceramics (GCs) but also influences the emission of a dopant ion. Therefore, a methodical understanding of the crystal growth mechanism and local site symmetry of doped luminescent ions when embedded into the precipitated "anti-glass" phase is crucial, which unfolds the practical applications of GCs. Here, we examined the Ln2Te6O15 "anti-glass" nanocrystalline phase growth mechanism and local site symmetry of Eu3+ ions in transparent GCs produced from 80TeO2-10TiO2-(5 - x)La2O3-5Gd2O3-xEu2O3 glasses, where x = 0, 1, 2. A crystallization kinetics study identifies a unique crystal growth mechanism via a constrained nucleation rate. The extent of "anti-glass" phase precipitation and its growth in GCs with respect to heat-treatment duration is demonstrated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. Qualitative analysis of XRD confirms the precipitation of both La2Te6O15 and Gd2Te6O15 nanocrystalline phases. Rietveld refinement of powder X-ray diffraction patterns reveals that Eu3+ ions occupy "Gd" sites in Gd2Te6O15 over "La" sites in La2Te6O15. Raman spectroscopy reveals the conversion of TeO3 units to TeO4 units with Eu2O3 addition. This confirms the polymerizing role of Eu2O3 and consequently high crystallization tenacity with increasing Eu2O3 concentration. The measured Eu3+ ion photoluminescence spectra revealed its local site symmetry. Moreover, the present GCs showed adequate thermal cycling stability (∼50% at 423 K) with the highest activation energy of around 0.3 eV and further suggested that the present transparent GCs would be a potential candidate for the fabrication of red-light-emitting diodes (LEDs) or red component phosphor in W-LEDs.

2.
Appl Opt ; 58(9): 2372-2381, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044938

RESUMO

Y3Al5O12:Ce3+ phosphor-in-glass (PiG) thin film on soda-lime silicate glass substrate has been applied using screen-printing method for generation of white LED light in modern day lighting. In this work, a glass composition in a ZnO-Bi2O3-B2O3 system has been optimized to have low softening temperature, as well as matching the refractive index with that of Y3Al5O12:Ce3+ phosphor. The sintering of the PiG layers was performed at a relatively low temperature of 560°C to avoid the chemical degradation of the phosphors. We employed a combination of powder x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, UV-visible absorption and fluorescence spectroscopy, as well as Fourier transfer infrared spectroscopy to study the detailed structure and different spectral properties of PiG samples. This Y3Al5O12:Ce3+-based PiG exhibits an external quantum efficiency of ∼40%, even with its thickness of only 5 µm. Under the excitation of the blue laser diode source, the synthesized PiG thin film has exhibited a bright white light with high color rendering index (CRI=92 and CCT=3877 K). The synthesized PiG sample was used to design a high-power white-light-emitting diode module by combining it with a 3 W blue LED on-board chip. This module is expected to be a promising candidate for next-generation illumination at a relatively lower cost, with long-term reliability.

3.
Phys Chem Chem Phys ; 18(48): 33115-33125, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27886306

RESUMO

Pr3+/Yb3+ doped materials have been widely reported as quantum-cutting materials in recent times. However, the question of the energy transfer mechanism in the Pr3+/Yb3+ pair in light of the quantum-cutting phenomenon still remains unanswered. In view of that, we explored a series of Pr3+/Yb3+ co-doped low phonon fluorotellurite glass systems to estimate the probability of different energy transfer mechanisms. Indeed, a novel and simple way to predict the probability of the proper energy transfer mechanism in the Pr3+/Yb3+ pair is possible by considering the donor Pr3+ ion emission intensities and the relative ratio dependence in the presence of acceptor Yb3+ ions. Moreover, the observed results are very much in accordance with other estimated results that support the quantum-cutting phenomena in Pr3+/Yb3+ pairs, such as sub-linear power dependence of Yb3+ NIR emission upon visible ∼450 nm laser excitation, integrated area of the donor Pr3+ ion's visible excitation spectrum recorded by monitoring the acceptor Yb3+ ion's NIR emission, and the experimentally obtained absolute quantum yield values using an integrating sphere setup. Our results give a simple way of estimating the probability of an energy transfer mechanism and the factors to be considered, particularly for the Pr3+/Yb3+ pair.

4.
J Fluoresc ; 20(1): 425-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19851847

RESUMO

This paper reports on the preparation and systematic analysis of energy transfer mechanisms in Nd(3+)-Yb(3+)-Er(3+) co-doped new series of barium-alumino-metaphosphate glasses. The time resolved fluorescence of Nd(3+) in triply doped Ba-Al-metaphosphate glasses have revealed that, Yb(3+) ions could function as quite efficient bridge for an energy transfer between Nd(3+) and Er(3+) ions. As a result, a fourfold emission enhancement at 1.54 mum of Er(3+) ions has been achieved through an excitation of (4)F(5/2) level of Nd(3+) at 806 nm for the glass having 3 mol% Yb(3+) with an energy transfer efficiency reaching up to 94%. Decay of donor (Nd(3+)) ion fluorescence has been analyzed based on theoretical models such as direct energy transfer model (Inokuti-Hirayama) and migration assisted energy transfer models (Burshtein's hopping and Yokota-Tanimoto's diffusion). The corresponding energy transfer parameters have been evaluated and discussed. Primarily, electrostatic dipole-dipole (s approximately 6) interactions are found to be responsible for the occurrence of energy transfer process in theses glasses.


Assuntos
Alumínio/química , Bário/química , Transferência de Energia , Olho , Vidro/química , Metais Terras Raras/química , Fosfatos/química , Absorção , Érbio/química , Neodímio/química , Fenômenos Ópticos , Segurança , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Fatores de Tempo , Itérbio/química
5.
Sci Rep ; 6: 29203, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27374129

RESUMO

The foremost limitation of an oxide based crystal or glass host to demonstrate mid- infrared emissions is its high phonon energy. It is very difficult to obtain radiative mid-infrared emissions from these hosts which normally relax non-radiatively between closely spaced energy levels of dopant rare earth ions. In this study, an intense mid-infrared emission around 2.9 µm has been perceived from Ho(3+) ions in Yb(3+)/Ho(3+) co-doped oxide based tellurite glass system. This emission intensity has increased many folds upon Yb(3+): 985 nm excitation compared to direct Ho(3+) excitations due to efficient excited state resonant energy transfer through Yb(3+): (2)F5/2 → Ho(3+): (5)I5 levels. The effective bandwidth (FWHM) and cross-section (σem) of measured emission at 2.9 µm are assessed to be 180 nm and 9.1 × 10(-21) cm(2) respectively which are comparable to other crystal/glass hosts and even better than ZBLAN fluoride glass host. Hence, this Ho(3+)/Yb(3+) co-doped oxide glass system has immense potential for the development of solid state mid-infrared laser sources operating at 2.9 µm region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA