Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011889

RESUMO

Autoimmune diseases with B cell-directed therapeutics approved by the US Food and Drug Administration are surprisingly diverse in clinical manifestations and pathophysiology. In this review, we focus on recent clinical and mechanistic insights into the efficacy of B cell depletion in these diverse autoimmune disorders, the rapidly expanding armamentarium of approved agents, and future approaches. The pathogenic roles for B cells include direct functions such as production of autoantibodies and proinflammatory cytokines and indirect functions via antigen presentation to T cells. The efficacy of B cell-depleting strategies varies across diseases and likely reflects the complexity of disease pathogenesis and relative contribution of B cell roles. Additionally, B cell-depleting therapies do not equally target all B cell subsets in all patients, and this likely explains some of the variability in responses. Recent reports of B cell depletion with novel chimeric antigen receptor (CAR) T cell approaches in an expanding number of autoimmune diseases highlight the potential role of B cell depletion in resetting immune tolerance. The relative importance of eliminating autoreactive B cells and plasma cells and approaches to doing so will also be discussed. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

3.
Nat Immunol ; 20(7): 928-942, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061532

RESUMO

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Perfilação da Expressão Gênica , Membrana Sinovial/metabolismo , Transcriptoma , Artrite Reumatoide/patologia , Autoimunidade/genética , Biomarcadores , Biologia Computacional/métodos , Estudos Transversais , Citocinas/metabolismo , Fibroblastos/metabolismo , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Membrana Sinovial/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fluxo de Trabalho
4.
Nat Immunol ; 20(7): 902-914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209404

RESUMO

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Assuntos
Rim/imunologia , Nefrite Lúpica/imunologia , Biomarcadores , Biópsia , Análise por Conglomerados , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Interferons/metabolismo , Rim/metabolismo , Rim/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Anotação de Sequência Molecular , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Célula Única , Transcriptoma
5.
Nature ; 623(7987): 616-624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938773

RESUMO

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Citocinas/metabolismo , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Membrana Sinovial/patologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Predisposição Genética para Doença/genética , Fenótipo , Análise da Expressão Gênica de Célula Única
6.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314758

RESUMO

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor 7 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Adulto Jovem
8.
J Immunol ; 207(11): 2660-2672, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706932

RESUMO

Type I IFN is essential for viral clearance but also contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), via aberrant nucleic acid-sensing pathways, leading to autoantibody production. Type III IFN (IFN-λ) is now appreciated to have a nonredundant role in viral infection, but few studies have addressed the effects of IFN-λ on immune cells given the more restricted expression of its receptor primarily to the epithelium. In this study, we demonstrate that B cells display a prominent IFN gene expression profile in patients with lupus. Serum levels of IFN-λ are elevated in SLE and positively correlate with B cell subsets associated with autoimmune plasma cell development, including CD11c+T-bet+CD21- B cells. Although B cell subsets express all IFN receptors, IFNLR1 strongly correlates with the CD11c+CD21- B cell expansion, suggesting that IFN-λ may be an unappreciated driver of the SLE IFN signature and B cell abnormalities. We show that IFN-λ potentiates gene transcription in human B cells typically attributed to type I IFN as well as expansion of T-bet-expressing B cells after BCR and TLR7/8 stimulation. Further, IFN-λ promotes TLR7/8-mediated plasmablast differentiation and increased IgM production. CD11c+ B cells demonstrate IFN-λ hyperresponsive signaling compared with other B cell subsets, suggesting that IFN-λ accelerates plasma cell differentiation through this putative extrafollicular pathway. In summary, our data support type III IFN-λ as a cytokine promoting the Ab-secreting cell pool in human viral and autoimmune disease.


Assuntos
Linfócitos B/imunologia , Interferons/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Plasmócitos/imunologia , Adulto , Idoso , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cytokine ; 132: 154725, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31153744

RESUMO

BACKGROUND: We have previously shown that SLE BMSC have decreased proliferation, increased ROS, increased DNA damage and repair (DDR), a senescence associated secretory phenotype, and increased senescence-associated ß-galactosidase. We have also shown SLE BMSC produce increased amounts of interferon beta (IFNß), have increased mRNA for several genes induced by IFNß, and have a pro-inflammatory feedback loop mediated by a MAVS. To better understand the phenotype of SLE BMSC we conducted mRNA sequencing. METHODS: Patients fulfilling SLE classification criteria and age and sex matched healthy controls were recruited under an Institutional Review Board approved protocol. Bone marrow aspirates and peripheral blood samples were obtained. BMSC were isolated and grown in tissue culture. Early passage BMSC were harvested and mRNA samples were sent for RNAseq. Serum samples were assayed for IFNß by ELISA. RESULTS: On the basis of top differentially expressed genes between SLE and healthy controls, SLE patients with high levels of serum IFNß clustered together while SLE patients with low levels of IFNß clustered with healthy controls. Those genes differentially expressed in SLE patients generally belonged to known IFN pathways, and showed a strong overlap with the set of genes differentially expressed in IFNß high subjects, per se. Moreover, gene expression changes induced by treating healthy BMSC with exogenous IFNß were remarkably similar to gene expression differences in SLE IFNß high vs low BMSC. CONCLUSIONS: BMSCs from SLE patients are heterogeneous. A subgroup of SLE BMSC is distinguished from other SLE BMSC and from controls by increased levels of mRNAs induced by type I interferons. This subgroup of SLE patients had increased levels of IFNß in vivo.


Assuntos
Células da Medula Óssea/metabolismo , Interferon beta/fisiologia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Humanos , Interferon beta/sangue , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , RNA-Seq
10.
J Autoimmun ; 102: 150-158, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085070

RESUMO

Systemic lupus (SLE) is characterized by a break of B cell tolerance that plays a central role in disease pathophysiology. An early checkpoint defect occurs at the transitional stage leading to the survival of autoreactive B cells and consequently the production of pathogenic autoantibodies. The main purpose of our work was to determine whether transitional B cells, as the most immature naïve B cell subset upstream of pathogenic B cells, display specific features compared to healthy non SLE subjects. Through extensive analysis of transitional B cells from untreated or low treated, mostly Caucasian, SLE patients, we demonstrated that transitional (T1 and T2) B cell frequencies were increased in SLE and positively correlated with disease activity. SLE transitional B cells displayed defects in two closely inter-related molecules (i.e. TLR9 defective responses and CD19 downregulation). RNA sequencing of sorted transitional B cells from untreated patients revealed a predominant overexpression of interferon stimulated genes (ISGs) even out of flares. In addition, early transitional B cells from the bone marrow displayed the highest interferon score, reflecting a B cell interferon burden of central origin. Hence, the IFN signature in transitional B cells is not confined to African American SLE patients and exists in quiescent disease since the medullary stage. These results suggest that in SLE these 3 factors (i.e. IFN imprintment, CD19 downregulation and TLR9 responses impairment) could take part at the early transitional B cell stage in B cell tolerance by-pass, ultimately leading in periphery to the expansion of autoantibodies-secreting cells.


Assuntos
Antígenos CD19/biossíntese , Interferons/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Células Precursoras de Linfócitos B/imunologia , Receptor Toll-Like 9/imunologia , Adulto , Idoso , Autoanticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Feminino , Humanos , Pessoa de Meia-Idade , Transcriptoma/genética
11.
J Immunol ; 199(2): 458-466, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28584005

RESUMO

Neutrophils are well characterized as mediators of peripheral tissue damage in lupus, but it remains unclear whether they influence loss of self-tolerance in the adaptive immune compartment. Lupus neutrophils produce elevated levels of factors known to fuel autoantibody production, including IL-6 and B cell survival factors, but also reactive oxygen intermediates, which can suppress lymphocyte proliferation. To assess whether neutrophils directly influence the progression of autoreactivity in secondary lymphoid organs (SLOs), we characterized the localization and cell-cell contacts of splenic neutrophils at several stages in the progression of disease in the NZB/W murine model of lupus. Neutrophils accumulate in SLO over the course of lupus progression, preferentially localizing near T lymphocytes early in disease and B cells with advanced disease. RNA sequencing reveals that the splenic neutrophil transcriptional program changes significantly over the course of disease, with neutrophil expression of anti-inflammatory mediators peaking during early-stage and midstage disease, and evidence of neutrophil activation with advanced disease. To assess whether neutrophils exert predominantly protective or deleterious effects on loss of B cell self-tolerance in vivo, we depleted neutrophils at different stages of disease. Neutrophil depletion early in lupus resulted in a striking acceleration in the onset of renal disease, SLO germinal center formation, and autoreactive plasma cell production. In contrast, neutrophil depletion with more advanced disease did not alter systemic lupus erythematosus progression. These results demonstrate a surprising temporal and context-dependent role for neutrophils in restraining autoreactive B cell activation in lupus.


Assuntos
Autoimunidade , Progressão da Doença , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Linfócitos B/imunologia , Modelos Animais de Doenças , Centro Germinativo/citologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NZB , Neutrófilos/fisiologia , Análise de Sequência de RNA , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia
12.
J Immunol ; 192(7): 3011-20, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24574498

RESUMO

Autoantibodies to dsDNA, produced by autoreactive plasma cells (PCs), are a hallmark of systemic lupus erythematosus and play a key role in disease pathogenesis. Recent data suggest that autoreactive PCs accumulate not only in lymphoid tissues, but also in the inflamed kidney in lupus nephritis. We hypothesized that the variable efficacy of anti-CD20 (rituximab)-mediated B cell depletion in systemic lupus erythematosus may be related to the absence of an effect on autoreactive PCs in the kidney. In this article, we report that an enrichment of autoreactive dsDNA Ab-secreting cells (ASCs) in the kidney of lupus-prone mice (up to 40% of the ASCs) coincided with a progressive increase in splenic germinal centers and PCs, and an increase in renal expression for PC survival factors (BAFF, a proliferation-inducing ligand, and IL-6) and PC attracting chemokines (CXCL12). Short-term treatment with anti-CD20 (4 wk) neither decreased anti-dsDNA nor IgG ASCs in different anatomical locations. However, long-term treatment (12 wk) significantly reduced both IgG- and dsDNA-specific ASCs. In addition, long-term treatment substantially decreased splenic germinal center and PC generation, and unexpectedly reduced the expression for PC survival factors in the kidney. These results suggest that prolonged B cell depletion may alter the PC survival niche in the kidney, regulating the accumulation and maintenance of autoreactive PCs.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Plasmócitos/imunologia , Animais , Anticorpos Antinucleares/imunologia , Anticorpos Antinucleares/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Antirreumáticos/farmacologia , Autoanticorpos/metabolismo , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Sobrevivência Celular/imunologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Feminino , Citometria de Fluxo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Camundongos Endogâmicos , Microscopia de Fluorescência , Plasmócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rituximab , Baço/imunologia , Baço/metabolismo , Fatores de Tempo
13.
J Immunol ; 192(3): 906-18, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24379124

RESUMO

Inappropriate activation of type I IFN plays a key role in the pathogenesis of autoimmune disease, including systemic lupus erythematosus (SLE). In this study, we report the presence of IFN activation in SLE bone marrow (BM), as measured by an IFN gene signature, increased IFN regulated chemokines, and direct production of IFN by BM-resident cells, associated with profound changes in B cell development. The majority of SLE patients had an IFN signature in the BM that was more pronounced than the paired peripheral blood and correlated with both higher autoantibodies and disease activity. Pronounced alterations in B cell development were noted in SLE in the presence of an IFN signature with a reduction in the fraction of pro/pre-B cells, suggesting an inhibition in early B cell development and an expansion of B cells at the transitional stage. These B cell changes strongly correlated with an increase in BAFF and APRIL expression in the IFN-high BM. Furthermore, we found that BM neutrophils in SLE were prime producers of IFN-α and B cell factors. In NZM lupus-prone mice, similar changes in B cell development were observed and mediated by IFN, given abrogation in NZM mice lacking type-I IFNR. BM neutrophils were abundant, responsive to, and producers of IFN, in close proximity to B cells. These results indicate that the BM is an important but previously unrecognized target organ in SLE with neutrophil-mediated IFN activation and alterations in B cell ontogeny and selection.


Assuntos
Subpopulações de Linfócitos B/imunologia , Medula Óssea/imunologia , Interferon Tipo I/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Linfopoese/imunologia , Neutrófilos/imunologia , Adulto , Animais , Fator Ativador de Células B/biossíntese , Fator Ativador de Células B/genética , Subpopulações de Linfócitos B/patologia , Medula Óssea/metabolismo , Quimiocinas/biossíntese , Quimiocinas/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Humanos , Interferon Tipo I/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Regulação para Cima/imunologia
14.
Curr Opin Rheumatol ; 27(5): 461-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164595

RESUMO

PURPOSE OF REVIEW: Our understanding of the physiological and pathogenic functions of B cells in systemic lupus erythematosus (SLE) and Primary Sjögren's syndrome (pSS) continues to expand. In this review, we discuss novel insights published in the last 18 months into the roles of B cells in systemic autoimmunity. RECENT FINDINGS: Data have continued to expand regarding the diverse mechanisms by which innate immune signals including Toll-like receptors (TLRs) regulate the B cell compartment. Localized B cells and long-lived plasma cells have been identified as playing an important role in target tissue including the development of ectopic lymphoid structures in kidney and salivary gland. In addition to pathogenic roles for B cells, there is mounting evidence for regulatory B cell subsets that play a protective role and new insights into the signals that regulate their development. SUMMARY: The past few years have provided insights into the multiple paths by which innate immune signals can lead to B cell activation in SLE and pSS and the increasingly diverse ways in which B cells contribute to disease expression. Further understanding the imbalance between protective and pathogenic functions for B cells in disease including in understudied target tissue should yield new treatment approaches.


Assuntos
Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Imunidade Adaptativa , Autoimunidade , Humanos , Imunidade Inata , Imunoterapia
15.
Nat Commun ; 15(1): 4650, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821936

RESUMO

Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. Here, we examine genome-wide open chromatin at single-cell resolution in 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identify 24 chromatin classes and predict their associated transcription factors, including a CD8 + GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating with an RA tissue transcriptional atlas, we propose that these chromatin classes represent 'superstates' corresponding to multiple transcriptional cell states. Finally, we demonstrate the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance, as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.


Assuntos
Artrite Reumatoide , Cromatina , Membrana Sinovial , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/imunologia , Humanos , Cromatina/metabolismo , Cromatina/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Epigênese Genética , Análise de Célula Única , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fibroblastos/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Transcrição Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo
16.
Nat Commun ; 15(1): 4991, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862501

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA.


Assuntos
Artrite Reumatoide , Linfócitos B , Membrana Sinovial , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Análise de Célula Única , Transcriptoma , Plasmócitos/imunologia , Plasmócitos/metabolismo , Idoso , Ativação Linfocitária , Adulto
17.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258904

RESUMO

Lupus nephritis (LN) is a pathologically heterogenous autoimmune disease linked to end-stage kidney disease and mortality. Better therapeutic strategies are needed as only 30%-40% of patients completely respond to treatment. Noninvasive biomarkers of intrarenal inflammation may guide more precise approaches. Because urine collects the byproducts of kidney inflammation, we studied the urine proteomic profiles of 225 patients with LN (573 samples) in the longitudinal Accelerating Medicines Partnership in RA/SLE cohort. Urinary biomarkers of monocyte/neutrophil degranulation (i.e., PR3, S100A8, azurocidin, catalase, cathepsins, MMP8), macrophage activation (i.e., CD163, CD206, galectin-1), wound healing/matrix degradation (i.e., nidogen-1, decorin), and IL-16 characterized the aggressive proliferative LN classes and significantly correlated with histological activity. A decline of these biomarkers after 3 months of treatment predicted the 1-year response more robustly than proteinuria, the standard of care (AUC: CD206 0.91, EGFR 0.9, CD163 0.89, proteinuria 0.8). Candidate biomarkers were validated and provide potentially treatable targets. We propose these biomarkers of intrarenal immunological activity as noninvasive tools to diagnose LN and guide treatment and as surrogate endpoints for clinical trials. These findings provide insights into the processes involved in LN activity. This data set is a public resource to generate and test hypotheses and validate biomarkers.


Assuntos
Nefrite Lúpica , Humanos , Nefrite Lúpica/tratamento farmacológico , Proteômica , Proteinúria , Inflamação , Agressão
18.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38293222

RESUMO

Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based pathologic immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation in patients with LN and to identify correlates of renal parameters and treatment response. Unbiased analysis identified 3 immunologically distinct groups of patients with LN that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells at baseline showed more severe disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized primarily by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive by immunophenotyping at enrollment but with chronic renal injuries. Main immune profiles could be distilled down to 5 simple cytometric parameters that recapitulate several of the associations, highlighting the potential for blood immune profiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.

19.
Arthritis Rheum ; 64(2): 493-503, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21905015

RESUMO

OBJECTIVE: To investigate the hypothesis that proteasome inhibition may have potential in the treatment of SLE, by targeting plasmacytoid dendritic cells (PDCs) and plasma cells, both of which are critical in disease pathogenesis. METHODS: Lupus-prone mice were treated with the nonselective proteasome inhibitors carfilzomib and bortezomib, the immunoproteasome inhibitor ONX 0914, or vehicle control. Tissue was harvested and analyzed by flow cytometry using standard markers. Nephritis was monitored by evaluation for proteinuria and by histologic analysis of kidneys. Serum anti-double-stranded DNA (anti-dsDNA) levels were measured by enzyme-linked immunosorbent assay (ELISA), and total IgG and dsDNA antibody-secreting cells (ASCs) by enzyme-linked immunospot assay. Human peripheral blood mononuclear cells or mouse bone marrow cells were incubated with Toll-like receptor (TLR) agonists and proteasome inhibitors, and interferon-α (IFNα) levels were measured by ELISA and flow cytometry. RESULTS: Early treatment of lupus-prone mice with the dual-targeting proteasome inhibitors carfilzomib or bortezomib or the immunoproteasome-specific inhibitor ONX 0914 prevented disease progression, and treatment of mice with established disease dramatically abrogated nephritis. Treatment had profound effects on plasma cells, with greater reductions in autoreactive than in total IgG ASCs, an effect that became more pronounced with prolonged treatment and was reflected in decreasing serum autoantibody levels. Notably, proteasome inhibition efficiently suppressed production of IFNα by TLR-activated PDCs in vitro and in vivo, an effect mediated by inhibition of both PDC survival and PDC function. CONCLUSION: Inhibition of the immunoproteasome is equally efficacious as dual targeting agents in preventing lupus disease progression by targeting 2 critical pathways in disease pathogenesis, type I IFN activation and autoantibody production by plasma cells.


Assuntos
Células Produtoras de Anticorpos/efeitos dos fármacos , Ácidos Borônicos/uso terapêutico , Interferon Tipo I/antagonistas & inibidores , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Inibidores de Proteases/uso terapêutico , Pirazinas/uso terapêutico , Animais , Células Produtoras de Anticorpos/imunologia , Autoanticorpos/imunologia , Ácidos Borônicos/farmacologia , Bortezomib , Progressão da Doença , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Camundongos , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia
20.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066336

RESUMO

Synovial tissue inflammation is the hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. We measured genome-wide open chromatin at single cell resolution from 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identified 24 chromatin classes and predicted their associated transcription factors, including a CD8+ GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating an RA tissue transcriptional atlas, we found that the chromatin classes represented 'superstates' corresponding to multiple transcriptional cell states. Finally, we demonstrated the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA