Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 41(6): 918-934, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33784900

RESUMO

Accumulation of reactive oxygen species (ROS), and their destructive effects on cellular organelles are the hallmark features of plants exposed to abiotic stresses. Plants are well-equipped with defensive mechanisms like antioxidant systems to deal with ROS-induced oxidative stress. Silicon has been emerged as an important regulator of plant protective mechanisms under environmental stresses, which can be up-taken from soil through a system of various silicon-transporters. In plants, silicon is deposited underneath of cuticles and in the cell wall, and help plant cells reduce deleterious effects of stresses. Furthermore, silicon can provide resistance to ROS-toxicity, which often accounts for silicon-mediated improvement of plant tolerance to different abiotic constraints, including salinity, drought, and metal toxicity. Silicon enhances the ROS-detoxification ability of treated plants by modulating the antioxidant defense systems, and the expression of key genes associated with oxidative stress mitigation and hormone metabolism. Silicon also displays additive roles in ROS-elimination when supplied with other external stimuli. Here, we discuss recent findings on how silicon is able to modulate antioxidant defense of plants in response to oxidative stress triggered by different abiotic constraints. We also review interactions of silicon with other signaling molecules, including nitric oxide, ROS, polyamines, and phytohormones in the mediation of plant protection against abiotic stress-induced oxidative damage.


Assuntos
Estresse Oxidativo , Silício , Plantas , Espécies Reativas de Oxigênio , Estresse Fisiológico
2.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639074

RESUMO

Soil salinization, which is aggravated by climate change and inappropriate anthropogenic activities, has emerged as a serious environmental problem, threatening sustainable agriculture and future food security. Although there has been considerable progress in developing crop varieties by introducing salt tolerance-associated traits, most crop cultivars grown in saline soils still exhibit a decline in yield, necessitating the search for alternatives. Halophytes, with their intrinsic salt tolerance characteristics, are known to have great potential in rehabilitating salt-contaminated soils to support plant growth in saline soils by employing various strategies, including phytoremediation. In addition, the recent identification and characterization of salt tolerance-related genes encoding signaling components from halophytes, which are naturally grown under high salinity, have paved the way for the development of transgenic crops with improved salt tolerance. In this review, we aim to provide a comprehensive update on salinity-induced negative effects on soils and plants, including alterations of physicochemical properties in soils, and changes in physiological and biochemical processes and ion disparities in plants. We also review the physiological and biochemical adaptation strategies that help halophytes grow and survive in salinity-affected areas. Furthermore, we illustrate the halophyte-mediated phytoremediation process in salinity-affected areas, as well as their potential impacts on soil properties. Importantly, based on the recent findings on salt tolerance mechanisms in halophytes, we also comprehensively discuss the potential of improving salt tolerance in crop plants by introducing candidate genes related to antiporters, ion transporters, antioxidants, and defense proteins from halophytes for conserving sustainable agriculture in salinity-prone areas.


Assuntos
Adaptação Fisiológica , Fenômenos Fisiológicos Vegetais , Salinidade , Tolerância ao Sal , Produtos Agrícolas , Espécies Reativas de Oxigênio/metabolismo , Plantas Tolerantes a Sal , Solo/química
3.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752185

RESUMO

Cadmium (Cd) is one of the prominent environmental hazards, affecting plant productivity and posing human health risks worldwide. Although salicylic acid (SA) and nitric oxide (NO) are known to have stress mitigating roles, little was explored on how they work together against Cd-toxicity in rice. This study evaluated the individual and combined effects of SA and sodium nitroprusside (SNP), a precursor of NO, on Cd-stress tolerance in rice. Results revealed that Cd at toxic concentrations caused rice biomass reduction, which was linked to enhanced accumulation of Cd in roots and leaves, reduced photosynthetic pigment contents, and decreased leaf water status. Cd also potentiated its phytotoxicity by triggering reactive oxygen species (ROS) generation and depleting several non-enzymatic and enzymatic components in rice leaves. In contrast, SA and/or SNP supplementation with Cd resulted in growth recovery, as evidenced by greater biomass content, improved leaf water content, and protection of photosynthetic pigments. These signaling molecules were particularly effective in restricting Cd uptake and accumulation, with the highest effect being observed in "SA + SNP + Cd" plants. SA and/or SNP alleviated Cd-induced oxidative damage by reducing ROS accumulation and malondialdehyde production through the maintenance of ascorbate and glutathione levels, and redox status, as well as the better activities of antioxidant enzymes superoxide dismutase, catalase, glutathione S-transferase, and monodehydroascorbate reductase. Combined effects of SA and SNP were observed to be more prominent in Cd-stress mitigation than the individual effects of SA followed by that of SNP, suggesting that SA and NO in combination more efficiently boosted physiological and biochemical responses to alleviate Cd-toxicity than either SA or NO alone. This finding signifies a cooperative action of SA and NO in mitigating Cd-induced adverse effects in rice, and perhaps in other crop plants.


Assuntos
Cádmio/toxicidade , Nitroprussiato/farmacologia , Oryza/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Sinergismo Farmacológico , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Água/metabolismo
4.
Lab Invest ; 93(7): 834-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23752130

RESUMO

Butyric acid, a short-chain fatty acid and one of the main metabolites of intestinal microbial fermentation of dietary fiber, has been shown to have an important role in maintaining the integrity of the intestinal mucosa, while it also has been shown to exert potent anti-inflammatory effects both in vitro and in vivo. However, the precise mechanisms underlying those effects have not been fully identified. We exposed colonic epithelial cells to butyric acid, then extracted total RNA samples, and subsequently hybridized them to microarray chips. Among the upregulated genes, milk fat globule-epidermal growth factor 8 (MFG-E8) was elevated by approximately fivefold. We previously reported that the potential therapeutic benefits of MFG-E8 in intestinal tissue injury were dependent not only on enhanced clearance of apoptotic cells but also required diverse cellular events for maintaining epithelial integrity. The influence of butyric acid on cell function is often attributed to its inhibition of histone deacetylases (HDACs). We found that acetylation on histone 3 lysine 9 (acetyl-H3K9) around the MFG-E8 promoter was significantly increased with butyric acid exposure. Experimental colitis was induced by administration of dextran sodium sulfate (DSS) in C57BL/6N (MFG-E8+/+) and MFG-E8-/- mice. Although the colonic bacterial compositions in wild-type (WT) and MFG-E8-/- mice were not significantly different, intrarectal administration of butyric acid during an acute phase of colitis attenuated intestinal inflammatory parameters and inhibited body weight loss in the WT mice. Our novel findings suggest that butyric acid has significant anti-inflammatory effects partly via MFG-E8 on DSS-induced murine experimental colitis.


Assuntos
Antígenos de Superfície/metabolismo , Ácido Butírico/uso terapêutico , Colite/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Proteínas do Leite/metabolismo , Administração Retal , Animais , Ácido Butírico/farmacologia , Linhagem Celular , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Antagonistas dos Receptores Histamínicos/farmacologia , Histonas/metabolismo , Masculino , Metagenoma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Regulação para Cima
5.
J Biotechnol ; 325: 109-118, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188807

RESUMO

Complete submergence (Sub) imposes detrimental effects on growth and survival of crop plants, including rice. Here, we investigated the beneficial effects of reduced glutathione (GSH) in mitigating Sub-induced adverse effects in two high-yielding rice cultivars BRRI dhan29 and dhan52. Both cultivars experienced growth defects, severe yellowing, necrosis and chlorosis, when they were completely immersed in water for 14 days. The poor growth performance of these cultivars was linked to biomass reduction, decreased levels of photosynthetic pigments and proline, increased levels of H2O2 and malondialdehyde, and declined activities of enzymatic antioxidants like superoxide dismutase, ascorbate peroxidase, peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Pretreatment with exogenous GSH led to significant growth restoration in both cultivars exposed to Sub. The elevated Sub-tolerance promoted by GSH could partly be attributed to increased levels of chlorophylls, carotenoids, soluble proteins and proline. Exogenous GSH also mitigated Sub-induced oxidative damage, as evidenced from reduced levels of H2O2 and malondialdehyde in accordance with the increased activities of antioxidant enzymes. Results revealed that dhan52 was more tolerant to Sub-stress than dhan29, and GSH successfully rescued both cultivars from the damage of Sub-stress. Collectively, our findings provided an insight into the GSH-mediated active recovery of rice from Sub-stress, thereby suggesting that external supply of GSH may be an effective strategy to mitigate the adverse effects of Sub in rice.


Assuntos
Glutationa , Oryza , Antioxidantes , Catalase/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Superóxido Dismutase/metabolismo
6.
Sci Rep ; 5: 14078, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26361343

RESUMO

We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops.


Assuntos
Cádmio/toxicidade , Sulfeto de Hidrogênio/farmacologia , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Biomassa , Carotenoides/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Oryza/química , Oryza/metabolismo , Oxirredutases/metabolismo , Fenótipo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taurina/análogos & derivados , Taurina/farmacologia
7.
J Gastroenterol ; 50(8): 862-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25596854

RESUMO

BACKGROUND: Milk fat globule-epidermal growth factor 8 (MFG-E8) promotes phagocytic clearance of apoptotic cells to maintain normal tissue homeostasis. However, its functions in intestinal inflammation and carcinogenesis are unknown. METHODS: Experimental colitis was induced in MFG-E8 knockout (KO) and wild-type (WT) mice by dextran sodium sulfate (DSS) administration. Colon tissues were used for assessments of colitis activity and epithelial proliferation. A mouse colitis-associated cancer (CAC) model was induced by intraperitoneal injection of azoxymethane (AOM) and then the animals were given a single administration of DSS. A sporadic colon cancer model was established by repeated intraperitoneal injections of AOM. The role of MFG-E8 in epithelial proliferation with or without treatment of siRNA targeting α(v)-integrin was examined in vitro using a WST-1 assay. RESULTS: The severity of colitis in KO mice was greater than that in WT mice, while the proliferative potential of colonic epithelial cells in KO mice was lower during the regenerative phase. In both CAC and sporadic models, tumor size in KO was lower as compared to WT mice, while decreased tumor incidence was only found in the CAC model. In vitro findings showed that MFG-E8 promotes epithelial cell proliferation, and treatment with a siRNA targeting α(v)-integrin reduced the proliferation of Colon-26 cells stimulated with recombinant MFG-E8. CONCLUSIONS: MFG-E8 promotes tumor growth regardless of the presence or absence of colonic inflammation, whereas colon tumor development is initiated by MFG-E8 under inflammatory conditions. These MFG-E8 functions may be dependent on integrin-mediated cellular signaling.


Assuntos
Antígenos de Superfície/fisiologia , Colite/fisiopatologia , Neoplasias do Colo/fisiopatologia , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Antígenos de Superfície/farmacologia , Azoximetano , Peso Corporal/fisiologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/patologia , Humanos , Integrina alfaVbeta3/fisiologia , Mucosa Intestinal/metabolismo , Camundongos Knockout , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/farmacologia , Células Tumorais Cultivadas
8.
Inflamm Bowel Dis ; 20(12): 2308-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25358066

RESUMO

Apoptosis is a programmed physiological death of unwanted cells, and handling of apoptotic cells (ACs) is thought to have profound effects on immune-mediated disorders. However, there is scant information regarding the role of ACs in intestinal inflammation, in which immune homeostasis is a major concern. To investigate this, we injected ACs into a severe combined immunodeficiency adoptive transfer model of chronic colitis in the presence and absence of cotransferred whole B or regulatory B cell (Breg)-depleted B cells. We also injected syngeneic ACs into AKR/N mice as a control and into milk fat globule-epidermal growth factor 8 knockout mice deficient of phagocytic function. Chronic colitis severity was significantly reduced in the AC as opposed to the phosphate-buffered saline group with cotransferred whole B cells. The AC-mediated effect was lost in the absence of B cells or presence of Breg-depleted B cells. In addition, ACs induced splenic B cells to secrete significantly increased levels of interleukin 10 in AKR/N mice but not milk fat globule-epidermal growth factor 8 knockout mice. Apoptotic leukocytes were induced by reactive oxygen species during granulocyte/monocyte apheresis therapy in rabbits and H2O2-induced apoptotic neutrophils ameliorated mice colitis. Our results indicate that ACs are protective only in the presence of B cells and phagocytosis of ACs induced interleukin 10 producing Bregs. Thus, the ameliorative effect seen in this study might have been exerted by AC-induced Bregs through increased production of the immunosuppressive cytokine interleukin 10, whereas an AC-mediated effect may contribute to the anti-inflammatory effect of granulocyte/monocyte apheresis as a novel therapeutic mechanism for inflammatory bowel disease.


Assuntos
Apoptose/imunologia , Artrite Experimental/imunologia , Linfócitos B Reguladores/imunologia , Colite/imunologia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Células Cultivadas , Doença Crônica , Colite/metabolismo , Colite/patologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , RNA Mensageiro/genética , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA