RESUMO
The healthy prostate is a relatively quiescent tissue. Yet, prostate epithelium overgrowth is a common condition during aging, associated with urinary dysfunction and tumorigenesis. For over thirty years, TGF-ß ligands have been known to induce cytostasis in a variety of epithelia, but the intracellular pathway mediating this signal in the prostate, and its relevance for quiescence, have remained elusive. Here, using mouse prostate organoids to model epithelial progenitors, we find that intra-epithelial non-canonical Activin A signaling inhibits cell proliferation in a Smad-independent manner. Mechanistically, Activin A triggers Tak1 and p38 ΜAPK activity, leading to p16 and p21 nuclear import. Spontaneous evasion from this quiescent state occurs upon prolonged culture, due to reduced Activin A secretion, a condition associated with DNA replication stress and aneuploidy. Organoids capable to escape quiescence in vitro are also able to implant with increased frequency into immunocompetent mice. This study demonstrates that non-canonical Activin A signaling safeguards epithelial quiescence in the healthy prostate, with potential implications for the understanding of cancer initiation, and the development of therapies targeting quiescent tumor progenitors.
Assuntos
Ativinas , Próstata , Ativinas/metabolismo , Animais , Masculino , Camundongos , Próstata/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismoRESUMO
Glioblastoma multiforme is a malignant primary brain tumor with a poor prognosis and high rates of chemo-radiotherapy failure, mainly due to a small cell fraction with stem-like properties (GSCs). The mechanisms underlying GSC response to radiation need to be elucidated to enhance sensitivity to treatments and to develop new therapeutic strategies. In a previous study, two GSC lines, named line #1 and line #83, responded differently to carbon ions and photon beams, with the differences likely attributable to their own different metabolic fingerprint rather than to radiation type. Data from the literature showed the capability of RHPS4, a G-quadruplex stabilizing ligand, to sensitize the glioblastoma radioresistant U251MG cells to X-rays. The combined metabolic effect of ligand #190, a new RHPS4-derivative showing reduced cardiotoxicity, and a photon beam has been monitored by magnetic resonance (MR) spectroscopy for the two GSC lines, #1 and #83, to reveal whether a synergistic response occurs. MR spectra from both lines were affected by single and combined treatments, but the variations of the analysed metabolites were statistically significant mainly in line #1, without synergistic effects due to combination. The multivariate analysis of ten metabolites shows a separation between control and treated samples in line #1 regardless of treatment type, while separation was not detected in line #83.
Assuntos
Acridinas/farmacologia , Quadruplex G , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Fótons , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Sobrevivência Celular , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiaçãoRESUMO
The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment. Furthermore, the effects related to the mixture of substances present in aquatic ecosystems may not be predictable on the basis of chemical analyses alone. This evidence, coupled with the dramatic effects of climate changes on water resources through water scarcity and flooding, makes urgent the application of innovative, fast and reliable monitoring methods. In this context, Effect-Based Methods (EBMs) have been applied in the urban stretch of the Tiber River (Central Italy) with the aim of understanding if detrimental pressures affect aquatic environmental health. In particular, different eco-genotoxicological assays have been used in order to detect genotoxic activity of chemicals present in the river, concurrently characterized by chemical analysis. Teratogenicity and embryo-toxicity have been studied in order to cover additional endpoints. The EBMs have highlighted the presence of diffuse chemical pollution and ecotoxicological effects in the three sampling stations, genotoxicological effects have been also detected through the use of different tests and organisms. The chemical analyses confirmed that in the aquatic ecosystems there is a diffuse presence, even at low concentrations, of emerging contaminants such as pharmaceuticals, not routinely monitored pesticides, personal care products, PFAS. The results of this study can help to identify an appropriate battery of EBMs for future studies and the application of more appropriate measures in order to monitor, mitigate or eliminate chemical contamination and remediate its adverse/detrimental effects on the ecosystem health.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Dano ao DNA , Ecossistema , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da ÁguaRESUMO
Early identification of neoplastic diseases is essential to achieve timely therapeutic interventions and significantly reduce the mortality of patients. A well-known biomarker is the Cancer Antigen 125 (CA125) or 16 mucin (MUC 16), a glycoprotein of the human family of mucins, already used for the diagnostic and prognostic evaluation of ovarian cancer. Therefore, the detection of CA125 to now remains a promising tool in the early diagnosis of this tumor. In this paper, we describe the development of RNA aptamers that bind with high affinity the tumor antigen CA125. We performed eight cycles of selection against CA125 purified protein. The selected aptamers were cloned and sequenced and the binding properties of the most promising sequences were studied by Real Time PCR and Surface Plasmon Resonance (SPR) to evaluate their ability in targeting CA125 protein with perspective applications in aptamer-based bioassays.
Assuntos
Aptâmeros de Nucleotídeos/química , Antígeno Ca-125/química , Proteínas de Membrana/química , Neoplasias Ovarianas/diagnóstico , Técnicas Biossensoriais , Detecção Precoce de Câncer , Feminino , Humanos , Proteínas Imobilizadas/química , Sequências Repetidas Invertidas , Ligação Proteica , Técnica de Seleção de AptâmerosRESUMO
BACKGROUND: Copy number variations (CNVs) can contribute to genetic variation among individuals and/or have a significant influence in causing diseases. Many studies consider new CNVs' effects on protein family evolution giving rise to gene duplicates or losses. "Unsuccessful" duplicates that remain in the genome as pseudogenes often exhibit functional roles. So, changes in gene and pseudogene number may contribute to development or act as susceptibility alleles of diseases. CASE PRESENTATION: We report a de novo heterozygous 271 Kb microdeletion at 8q21.2 region which includes the family of REXO1L genes and pseudogenes in a young man affected by global development delay, progeroid signs, and gastrointestinal anomalies. Molecular and cellular analysis showed that the REXO1L1 gene hemizygosity in a patient's fibroblasts induces genetic instability and increased apoptosis after treatment with different DNA damage-induced agents. CONCLUSIONS: The present results support the hypothesis that low copy gene number within REXO1L1 cluster could play a significant role in this complex clinical and cellular phenotype.
Assuntos
Deficiências do Desenvolvimento/complicações , Loci Gênicos/genética , Síndromes de Malabsorção/complicações , Síndromes de Malabsorção/genética , Família Multigênica/genética , Deleção de Sequência , Adolescente , Apraxias/complicações , Pré-Escolar , Regulação da Expressão Gênica/genética , Humanos , Masculino , Fenótipo , Pseudogenes/genética , Adulto JovemRESUMO
Combretastatin A-4 (CA-4) is one of the most effective agents used in chemotherapy. Nevertheless, the contribution of p53 and Bim proteins in the CA-4-induced apoptosis in non-small lung cancer cells (NSCLC) remains unresolved, specifically on involving of p53 in the mitochondrial pathway activation by a transcription-independent mechanism. In this context, the p53-null H1299 and wt-p53 H460 NSCLC cells, in the absence and presence of pifithrin-µ (PFTµ), an inhibitor of p53 mitochondrial-translocation, were treated with CA-4 and different cellular endpoints were analysed. In contrast to previous observations in H460 cells, CA-4 failed in the activation of an apoptotic response in H1299 cells, thus indicating an involvement of p53 in the cell death induced by the drug. We found that CA-4 led to p53 cellular re-localisation in H460 cells; in particular, p53 was released from the microtubular network and accumulated at mitochondria where it interacts with Bim protein and other proteins of the Bcl-2 (B-cell leukaemia-2) family, leading to cytochrome c release, alteration in the mitochondrial membrane polarisation, cell cycle arrest at the G2/M-phase, and cell death. Interestingly, the cytosolic and the mitochondrial accumulation of protein Bim was strictly dependent on p53 status. The extent of cell death was not reduced in H460 after combined treatment of PFTµ with CA-4. Overall, the data support a model of CA-4-induced apoptosis in NSCLC, for which the expression of p53 protein is essential, but its mitochondrial function, linked to p53-transcription independent apoptosis pathway, is negligible.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Bibenzilas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citocromos c/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/metabolismo , Células Tumorais CultivadasRESUMO
The relationship between DNA repair failure and cancer is well established as in the case of rare, high penetrant genes in high cancer risk families. Beside this, in the last two decades, several studies have investigated a possible association between low penetrant polymorphic variants in genes devoted to DNA repair pathways and risk for developing cancer. This relationship would be also supported by the observation that DNA repair processes may be modulated by sequence variants in DNA repair genes, leading to susceptibility to environmental carcinogens. In this framework, the aim of this review is to provide the reader with the state of the art on the association between common genetic variants and cancer risk, limiting the attention to single nucleotide polymorphisms (SNPs) of the NBN gene and providing the various odd ratios (ORs). In this respect, the NBN protein, together with MRE11 and RAD50, is part of the MRN complex which is a central player in the very early steps of sensing and processing of DNA double-strand breaks (DSBs), in telomere maintenance, in cell cycle control, and in genomic integrity in general. So far, many papers were devoted to ascertain possible association between common synonymous and non-synonymous NBN gene polymorphisms and increased cancer risk. However, the results still remain inconsistent and inconclusive also in meta-analysis studies for the most investigated E185Q NBN miscoding variant.
RESUMO
We present an investigation of the effects on BxPC3 pancreatic cancer cells of proton therapy combined with hyperthermia, assisted by magnetic fluid hyperthermia performed with the use of magnetic nanoparticles. The cells' response to the combined treatment has been evaluated by means of the clonogenic survival assay and the estimation of DNA Double Strand Breaks (DSBs). The Reactive Oxygen Species (ROS) production, the tumor cell invasion and the cell cycle variations have also been studied. The experimental results have shown that the combination of proton therapy, MNPs administration and hyperthermia gives a clonogenic survival that is much smaller than the single irradiation treatment at all doses, thus suggesting a new effective combined therapy for the pancreatic tumor. Importantly, the effect of the therapies used here is synergistic. Moreover, after proton irradiation, the hyperthermia treatment was able to increase the number of DSBs, even though just at 6 h after the treatment. Noticeably, the magnetic nanoparticles' presence induces radiosensitization effects, and hyperthermia increases the production of ROS, which contributes to cytotoxic cellular effects and to a wide variety of lesions including DNA damage. The present study indicates a new way for clinical translation of combined therapies, also in the vision of an increasing number of hospitals that will use the proton therapy technique in the near future for different kinds of radio-resistant cancers.
RESUMO
The Nijmegen breakage syndrome (NBS) is a genetic disorder caused by mutations in NBN gene and characterized by chromosomal instability and hypersensitivity to ionizing radiations (IR). The N-terminus of nibrin (NBN) contains a tandem breast cancer 1 (BRCA1) carboxy-terminal (BRCT) domain that represents one of the major mediators of phosphorylation-dependent protein-protein interactions in processes related to cell cycle checkpoint and DNA repair functions. Patients with NBS compound heterozygous for the 657del5 hypomorphic mutation and for the Arg215Trp missense mutation (corresponding to the 643C>T gene mutation) display a clinical phenotype more severe than that of patients homozygous for the 657del5 mutation. Here, we show that both the 657del5 and Arg215Trp mutations, occurring within the tandem BRCT domains of NBN, although not altering the assembly of the MRE11/RAD50/NBN (MRN) complex, affect the MRE11 IR-induced nuclear foci (IRIF) formation and the DNA double-strand break (DSB) signaling via the phosphorylation of both ataxia-telangiectasia-mutated (ATM) kinase and ATM downstream targets (e.g., SMC1 and p53). Remarkably, data obtained indicate that the cleavage of the BRCT tandem domains of NBN by the 657del5 mutation affects the DNA damage response less than the Arg215Trp mutation. Indeed, the 70-kDa NBN fragment, arising from the 657del5 mutation, maintains the capability to interact with MRE11 and γ-H2AX and to form IRIF. Altogether, the role of the tandem BRCT domains of NBN in the localization of the MRN complex at the DNA DSB and in the activation of the damage response is highlighted.
Assuntos
Proteína BRCA1/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Mutação , Síndrome de Quebra de Nijmegen/genética , Proteínas Nucleares/genética , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Genótipo , Heterozigoto , Homozigoto , Humanos , Proteína Homóloga a MRE11 , Síndrome de Quebra de Nijmegen/metabolismo , Síndrome de Quebra de Nijmegen/patologia , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Actin-related protein 2/3 complex subunit 1B (ARPC1B) deficiency is a recently described inborn error of immunity (IEI) presenting with combined immunodeficiency and characterized by recurrent infections and thrombocytopenia. Manifestations of immune dysregulation, including colitis, vasculitis, and severe dermatitis, associated with eosinophilia, hyper-IgA, and hyper-IgE are also described in ARPC1B-deficient patients. To date, hematopoietic stem cell transplantation seems to be the only curative option for patients. ARPC1B is part of the actin-related protein 2/3 complex (Arp2/3) and cooperates with the Wiskott-Aldrich syndrome protein (WASp) in the regulation of the actin cytoskeleton remodeling and in driving double-strand break clustering for homology-directed repair. In this study, we aimed to investigate radiosensitivity (RS) in ARPC1B-deficient patients to assess whether it can be considered an additional disease trait. First, we performed trio-based next-generation-sequencing studies to obtain the ARPC1B molecular diagnosis in our index case characterized by increased RS, and then we confirmed, using three different methods, an increment of radiosensitivity in all enrolled ARPC1B-deficient patients. In particular, higher levels of chromatid-type aberrations and γH2AX foci, with an increased number of cells arrested in the G2/M-phase of the cell cycle, were found in patients' cells after ionizing radiation exposition and radiomimetic bleomycin treatment. Overall, our data suggest increased radiosensitivity as an additional trait in ARPC1B deficiency and support the necessity to investigate this feature in ARPC1B patients as well as in other IEI with cytoskeleton defects to address specific clinical follow-up and optimize therapeutic interventions.
Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Citoesqueleto , Proteína 2 Relacionada a Actina , Citoesqueleto/metabolismo , Humanos , Tolerância a Radiação/genéticaRESUMO
ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central "caretaker" of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
RESUMO
Glioblastoma multiforme (GBM) is a malignant tumor of the central nervous system (CNS). The poor prognosis of GBM due to resistance to therapy has been associated with high chromosomal instability (CIN). Replication stress is a major cause of CIN that manifests as chromosome rearrangements, fragility, and breaks, including those cytologically expressed within specific chromosome regions named common fragile sites (CFSs). In this work, we characterized the expression of human CFSs in the glioblastoma U-251 MG cell line upon treatment with the inhibitor of DNA polymerase alpha aphidicolin (APH). We observed 52 gaps/breaks located within previously characterized CFSs. We found 17 to be CFSs in GBM cells upon treatment with APH, showing a frequency equal to at least 1% of the total gaps/breaks. We report that two CFSs localized to regions FRA2E (2p13/p12) and FRA2F (2q22) were only found in U-251 MG cells, but not lymphocytes or fibroblasts, after APH treatment. Notably, these glioblastoma-specific CFSs had a relatively high expression compared to the other CFSs with breakage frequency between â¼7 and 9%. Presence of long genes, incomplete replication, and delayed DNA synthesis during mitosis (MiDAS) after APH treatment suggest that an impaired replication process may contribute to this loci-specific fragility in U-251 MG cells. Altogether, our work offers a characterization of common fragile site expression in glioblastoma U-251 MG cells that may be further exploited for cytogenetic and clinical studies to advance our understanding of this incurable cancer.
RESUMO
17ß-estradiol (E2) regulates human physiology both in females and in males. At the same time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the foundations of the physiological definition of "hormone" as E2 works both as a homeostatic regulator of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes required to maintain genome integrity belong to the E2-controlled cellular signaling network and are essential for the appearance of the E2-induced cellular effects. This concept requires an "upgrade" to the vision of E2 as a "genotoxic hormone", which balances physiological and detrimental pathways to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways would determine the E2 pathological effects.
RESUMO
Most human tumors maintain telomere lengths by telomerase, whereas a portion of them (10%-15%) uses a mechanism named alternative lengthening of telomeres (ALT). The telomeric G-quadruplex (G4) ligand RHPS4 is known for its potent antiproliferative effect, as shown in telomerase-positive cancer models. Moreover, RHPS4 is also able to reduce cell proliferation in ALT cells, although the influence of G4 stabilization on the ALT mechanism has so far been poorly investigated. Here we show that sensitivity to RHPS4 is comparable in ALT-positive (U2OS; SAOS-2) and telomerase-positive (HOS) osteosarcoma cell lines, unlinking the telomere maintenance mechanism and RHPS4 responsiveness. To investigate the impact of G4 stabilization on ALT, the cardinal ALT hallmarks were analyzed. A significant induction of telomeric doublets, telomeric clusterized DNA damage, ALT-associated Promyelocytic Leukaemia-bodies (APBs), telomere sister chromatid exchanges (T-SCE) and c-circles was found exclusively in RHPS4-treated ALT cells. We surmise that RHPS4 affects ALT mechanisms through the induction of replicative stress that in turn is converted in DNA damage at telomeres, fueling recombination. In conclusion, our work indicates that RHPS4-induced telomeric DNA damage promotes overactivation of telomeric recombination in ALT cells, opening new questions on the therapeutic employment of G4 ligands in the treatment of ALT positive tumors.
Assuntos
Quadruplex G , Osteossarcoma/genética , Homeostase do Telômero/genética , Telômero/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Replicação do DNA/genética , Humanos , Osteossarcoma/patologia , Transdução de Sinais/genética , Telomerase/genéticaRESUMO
A combination of carbon ions/photons irradiation and hyperthermia as a novel therapeutic approach for the in-vitro treatment of pancreatic cancer BxPC3 cells is presented. The radiation doses used are 0-2 Gy for carbon ions and 0-7 Gy for 6 MV photons. Hyperthermia is realized via a standard heating bath, assisted by magnetic fluid hyperthermia (MFH) that utilizes magnetic nanoparticles (MNPs) exposed to an alternating magnetic field of amplitude 19.5 mTesla and frequency 109.8 kHz. Starting from 37 °C, the temperature is gradually increased and the sample is kept at 42 °C for 30 min. For MFH, MNPs with a mean diameter of 19 nm and specific absorption rate of 110 ± 30 W/gFe3o4 coated with a biocompatible ligand to ensure stability in physiological media are used. Irradiation diminishes the clonogenic survival at an extent that depends on the radiation type, and its decrease is amplified both by the MNPs cellular uptake and the hyperthermia protocol. Significant increases in DNA double-strand breaks at 6 h are observed in samples exposed to MNP uptake, treated with 0.75 Gy carbon-ion irradiation and hyperthermia. The proposed experimental protocol, based on the combination of hadron irradiation and hyperthermia, represents a first step towards an innovative clinical option for pancreatic cancer.
RESUMO
The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efeitos da radiação , Dano ao DNA/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células Cultivadas , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Raios gama , Humanos , Prótons , Doses de Radiação , Raios XRESUMO
Retinoid-related molecules (RRM) are novel agents with tumor-selective cytotoxic/antiproliferative activity, a different mechanism of action from classic retinoids and no cross-resistance with other chemotherapeutics. ST1926 and CD437 are prototypic RRMs, with the former currently undergoing phase I clinical trials. We show here that ST1926, CD437, and active congeners cause DNA damage. Cellular and subcellular COMET assays, H2AX phosphorylation (gamma-H2AX), and scoring of chromosome aberrations indicate that active RRMs produce DNA double-strand breaks (DSB) and chromosomal lesions in NB4, an acute myeloid leukemia (AML) cell line characterized by high sensitivity to RRMs. There is a direct quantitative correlation between the levels of DSBs and the cytotoxic/antiproliferative effects induced by RRMs. NB4.437r blasts, which are selectively resistant to RRMs, do not show any sign of DNA damage after treatment with ST1926, CD437, and analogues. DNA damage is the major mechanism underlying the antileukemic activity of RRMs in NB4 and other AML cell lines. In accordance with the S-phase specificity of the cytotoxic and antiproliferative responses of AML cells to RRMs, increases in DSBs are maximal during the S phase of the cell cycle. Induction of DSBs precedes inhibition of DNA replication and is associated with rapid activation of ataxia telangectasia mutated, ataxia telangectasia RAD3-related, and DNA-dependent protein kinases with subsequent stimulation of the p38 mitogen-activated protein kinase. Inhibition of ataxia telangectasia mutated and DNA-dependent protein kinases reduces phosphorylation of H2AX. Cells defective for homologous recombination are particularly sensitive to ST1926, indicating that this process is important for the protection of cells from the RRM-dependent DNA damage and cytotoxicity.
Assuntos
Adamantano/análogos & derivados , Cinamatos/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Retinoides/farmacologia , Fase S/efeitos dos fármacos , Adamantano/farmacologia , Animais , Células CHO , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Cricetinae , Cricetulus , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Histonas/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Recombinação Genética/efeitos dos fármacosRESUMO
Heterochromatin Protein 1 (HP1) and the Mre11-Rad50-Nbs1 (MRN) complex are conserved factors that play crucial role in genome stability and integrity. Despite their involvement in overlapping cellular functions, ranging from chromatin organization, telomere maintenance to DNA replication and repair, a tight functional relationship between HP1 and the MRN complex has never been elucidated. Here we show that the Drosophila HP1a protein binds to the MRN complex through its chromoshadow domain (CSD). In addition, loss of any of the MRN members reduces HP1a levels indicating that the MRN complex acts as regulator of HP1a stability. Moreover, overexpression of HP1a in nbs (but not in rad50 or mre11) mutant cells drastically reduces DNA damage associated with the loss of Nbs suggesting that HP1a and Nbs work in concert to maintain chromosome integrity in flies. We have also found that human HP1α and NBS1 interact with each other and that, similarly to Drosophila, siRNA-mediated inhibition of NBS1 reduces HP1α levels in human cultured cells. Surprisingly, fibroblasts from Nijmegen Breakage Syndrome (NBS) patients, carrying the 657del5 hypomorphic mutation in NBS1 and expressing the p26 and p70 NBS1 fragments, accumulate HP1α indicating that, differently from NBS1 knockout cells, the presence of truncated NBS1 extends HP1α turnover and/or promotes its stability. Remarkably, an siRNA-mediated reduction of HP1α in NBS fibroblasts decreases the hypersensitivity to irradiation, a characteristic of the NBS syndrome. Overall, our data provide an unanticipated evidence of a close interaction between HP1 and NBS1 that is essential for genome stability and point up HP1α as a potential target to counteract chromosome instability in NBS patient cells.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica/genética , Proteínas Nucleares/genética , Animais , Homólogo 5 da Proteína Cromobox , Dano ao DNA/genética , Drosophila melanogaster/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genoma de Inseto/genética , Humanos , Masculino , Mutação/genética , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/patologiaRESUMO
The relationship between microtubular dynamics, dismantling of pericentriolar components and induction of apoptosis was analysed after exposure of H460 non-small lung cancer cells to anti-mitotic drugs. The microtubule destabilising agent, combretastatin-A4 (CA-4) led to microtubular array disorganization, arrest in mitosis and abnormal metaphases, accompanied by the presence of numerous centrosome-independent "star-like" structures containing tubulin and aggregates of pericentrosomal matrix components like gamma-tubulin, pericentrin and ninein, whereas the structural integrity of centrioles was not affected by treatment. On the contrary, in condition of prolonged exposure or high concentrations of CA-4 such aggregates never formed. Treatment with 7.5 nM CA-4, which produced a high frequency "star-like" aggregates, was accompanied by mitotic catastrophe commitment characterized by translocation of the proapoptotic Bim protein to mitochondria activation of caspases-3/9 and DNA fragmentation as a result of either prolonged metaphase arrest or attempt of cells to divide. Drug concentrations which fail to block cells at mitosis were also unable to activate apotosis. A detailed time-course analysis of cell cycle arrest and apoptosis indicated that after CA-4 washout the number of metaphases with "star-like" structures decreased as a function of time and arrested cells proceeded in anaphase. After 4 h, the multiple alpha- and gamma-tubulin aggregates coalesced into two well-defined spindles in a bipolar mitotic spindle organization. Overall, our findings suggest that the maintenance of microtubular integrity plays a relevant role in stabilising the pericentriolar matrix, whose dismantling can be associated with apoptosis after exposure to microtubule depolymerising agents.