Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 61(50): e202202711, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259321

RESUMO

Efficient design of functional proteins with higher thermal stability remains challenging especially for highly diverse sequence variants. Considering the evolutionary pressure on protein folds, sequence design optimizing evolutionary fitness could help designing folds with higher stability. Using a generative evolution fitness model trained to capture variation patterns in natural sequences, we designed artificial sequences of a proteinaceous inhibitor of pectin methylesterase enzymes. These inhibitors have considerable industrial interest to avoid phase separation in fruit juice manufacturing or reduce methanol in distillates, averting chromatographic passages triggering unwanted aroma loss. Six out of seven designs with up to 30 % divergence to other inhibitor sequences are functional and two have improved thermal stability. This method can improve protein stability expanding functional protein sequence space, with traits valuable for industrial applications and scientific research.


Assuntos
Proteínas , Sequência de Aminoácidos , Proteínas/química , Estabilidade Proteica
2.
Int J Biol Macromol ; 269(Pt 2): 131918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697418

RESUMO

Polygalacturonases (PGs) can modulate chemistry and mechanical properties of the plant cell wall through the degradation of pectins, one of its major constituents. PGs are largely used in food, beverage, textile, and paper industries to increase processes' performances. To improve the use of PGs, knowledge of their biochemical, structural and functional features is of prime importance. Our study aims at characterizing SmoPG1, a polygalacturonase from Selaginella moellendorffii, that belongs to the lycophytes. Transcription data showed that SmoPG1 was mainly expressed in S. moellendorffii shoots while phylogenetic analyses suggested that SmoPG1 is an exo-PG, which was confirmed by the biochemical characterization following its expression in heterologous system. Indeed, LC-MS/MS oligoprofiling using various pectic substrates identified galacturonic acid (GalA) as the main hydrolysis product. We found that SmoPG1 was most active on polygalacturonic acid (PGA) at pH 5, and that its activity could be modulated by different cations (Ca2+, Cu2+, Fe2+, Mg2+, Mn2+, Na2+, Zn2+). In addition, SmoPG1 was inhibited by green tea catechins, including (-)-epigallocatechin-3-gallate (EGCG). Docking analyses and MD simulations showed in detail amino acids responsible for the SmoPG1-EGCG interaction. Considering its expression yield and activity, SmoPG1 appears as a prime candidate for the industrial production of GalA.


Assuntos
Pectinas , Poligalacturonase , Selaginellaceae , Poligalacturonase/metabolismo , Poligalacturonase/química , Poligalacturonase/genética , Selaginellaceae/química , Selaginellaceae/genética , Selaginellaceae/enzimologia , Pectinas/metabolismo , Pectinas/química , Filogenia , Especificidade por Substrato , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Hidrólise , Ácidos Hexurônicos
3.
Biochimie ; 203: 51-64, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35395327

RESUMO

Sesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments. While a specific recognition of phosphatidylethanolamine (PE) might explain its activity in a variety of different organisms (including bacteria), a further interaction with ergosterol accounts for its strong antifungal activity. NMR data reveal a charge gradient along its amide protons allowing the peptide to reach the membrane phosphate groups despite its negative charge. Subsequently, the peptide gets structured inside the bilayer, reducing its order. MD simulations predict that its activity is retained in conditions commonly used for food preservation: low temperatures, high pressure, or the presence of electric field pulses, making Sesquin a good candidate as food preservative.


Assuntos
Antifúngicos , Bicamadas Lipídicas , Antifúngicos/farmacologia , Antifúngicos/química , Bicamadas Lipídicas/química , Conservantes de Alimentos/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Fungos
4.
FEBS J ; 289(7): 1984-2003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34767285

RESUMO

HB43 (FAKLLAKLAKKLL) is a synthetic peptide active against cell lines derived from breast, colon, melanoma, lung, prostate, and cervical cancers. Despite its remarkable spectrum of activity, the mechanism of action at the molecular level has never been investigated, preventing further optimization of its selectivity. The alternation of charged and hydrophobic residues suggests amphipathicity, but the formation of alpha-helical structure seems discouraged by its short length and the large number of positively charged residues. Using different biophysical and in silico approaches we show that HB43 is completely unstructured in solution but assumes alpha-helical conformation in the presence of DPC micelles and liposomes exposing phosphatidylserine (PS) used as mimics of cancer cell membranes. Membrane permeabilization assays demonstrate that the interaction leads to the preferential destabilization of PS-containing vesicles with respect to PC-containing ones, here used as noncancerous cell mimics. ssNMR reveals that HB43 is able to fluidify the internal structure of cancer-cell mimicking liposomes while MD simulations show its internalization in such bilayers. This is achieved by the formation of specific interactions between the lysine side chains and the carboxylate group of phosphatidylserine and/or the phosphate oxygen atoms of targeted phospholipids, which could catalyze the formation of the alpha helix required for internalization. With the aim of better understanding the peptide biocompatibility and the additional antibacterial activity, the interaction with noncancerous cell mimicking liposomes exposing phosphatidylcholine (PC) and bacterial mimicking bilayers exposing phosphatidylglycerol (PG) is also described.


Assuntos
Neoplasias , Fosfatidilserinas , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Neoplasias/tratamento farmacológico , Fosfatidilgliceróis
5.
Front Pharmacol ; 13: 821181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295326

RESUMO

Scorpion α-toxins are neurotoxins that target the fast inactivation mechanism of voltage-gated sodium (NaV) channels leading to several neuro- and cardiotoxic effects in mammals. The toxin AahII is the most active α-toxin from the North African scorpion Androctonus australis Hector that slows the fast inactivation of NaV channels. To fight scorpion envenomation, an anti-AahII nanobody named NbAahII10 (Nb10) was developed. The efficiency of this nanobody has been evaluated in vivo on mice, but its mechanism of action at the cellular level remains unknown. Here we have shown that AahII toxin slows the fast inactivation of the adult cardiac NaV1.5 channels, expressed in HEK293 cells, in a dose-dependent manner, while current amplitude was not affected. The inactivation of NaV1.5 is slower by a factor of 4, 7, and 35 in the presence of [AahII] at 75, 150, and 300 nM, respectively. The washout partially reversed the toxin effect on inactivation from 8.3 ± 0.9 ms to 5.2 ± 1.2 ms at 75 nM. We have also demonstrated that the highly neutralizing Nb10 can fully reverse the effect of AahII toxin on the channel inactivation kinetics even at the 1:1 M ratio. However, the 1:0.5 M ratio is not able to neutralize completely the AahII effect. Therefore, the application of Nb10 promotes a partial abolishment of AahII action. Bioinformatic analysis and prediction of NaV1.5-driven docking with AahII show that Ala39 and Arg62 of AahII play a crucial role to establish a stable interaction through H-bound interactions with Gln1615 and Lys1616 (S3-S4 extracellular loop) and Asp1553 (S1-S2 loop) from the voltage-sensing domain IV (VSD4) of NaV1.5, respectively. From this, we notice that AahII shares the same contact surface with Nb10. This strongly suggests that Nb10 dynamically replaces AahII toxin from its binding site on the NaV1.5 channel. At the physiopathological level, Nb10 completely neutralized the enhancement of breast cancer cell invasion induced by AahII. In summary, for the first time, we made an electrophysiological and structural characterization of the neutralization potent of Nb10 against the α-scorpion toxin AahII in a cellular model overexpressing NaV1.5 channels.

6.
Pharmaceutics ; 14(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631675

RESUMO

Despite the remarkable similarity in amino acid composition, many anticancer peptides (ACPs) display significant differences in terms of activity. This strongly suggests that particular relative dispositions of amino acids (motifs) play a role in the interaction with their biological target, which is often the cell membrane. To better verify this hypothesis, we intentionally modify HB43, an ACP active against a wide variety of cancers. Sequence alignment of related ACPs by ADAPTABLE web server highlighted the conserved motifs that could be at the origin of the activity. In this study, we show that changing the order of amino acids in such motifs results in a significant loss of activity against colon and breast cancer cell lines. On the contrary, amino acid substitution in key motifs may reinforce or weaken the activity, even when the alteration does not perturb the amphipathicity of the helix formed by HB43 on liposomes mimicking their surface. NMR and MD simulations with different membrane models (micelles, bicelles, and vesicles) indicate that the activity reflects the insertion capability in cancer-mimicking serine-exposing membranes, supported by the insertion of N-terminal phenylalanine in the FAK motif and the anchoring to the carboxylate of phosphatidylserine by means of arginine side chains.

7.
J Med Chem ; 64(8): 5185-5197, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33851832

RESUMO

Bombinins are a wide family of antimicrobial peptides from Xenopus skin. By sequence clustering, we highlighted at least three families named A, B, and H, which might exert antibacterial activity by different modes of action. In this work, we study bombinin-like peptide 3 (BLP-3) as a nonhemolytic representative of the quite unexplored class A due to its appealing activity toward WHO-priority-list bacteria such as Neisseria, Pseudomonas aeruginosa, and Staphylococcus aureus. A marked preference for cardiolipin and phosphatidylglycerol head groups, typically found in bacteria, is proven with biomimetic membranes studied by liquid and solid NMR and MD simulations. BLP-3 gets structured upon interaction and penetrates deeply into the bilayer in two steps involving a superficial insertion of key side chains and subsequent internalization. All along the pathway, a fundamental role is played by lysine residues in the conserved region 11-19, which act in synergy with other key residues.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Materiais Biomiméticos/metabolismo , Bicamadas Lipídicas/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/classificação , Materiais Biomiméticos/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Pele/metabolismo , Xenopus/metabolismo
8.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374932

RESUMO

K11 is a synthetic peptide originating from the introduction of a lysine residue in position 11 within the sequence of a rationally designed antibacterial scaffold. Despite its remarkable antibacterial properties towards many ESKAPE bacteria and its optimal therapeutic index (320), a detailed description of its mechanism of action is missing. As most antimicrobial peptides act by destabilizing the membranes of the target organisms, we investigated the interaction of K11 with biomimetic membranes of various phospholipid compositions by liquid and solid-state NMR. Our data show that K11 can selectively destabilize bacterial biomimetic membranes and torque the surface of their bilayers. The same is observed for membranes containing other negatively charged phospholipids which might suggest additional biological activities. Molecular dynamic simulations reveal that K11 can penetrate the membrane in four steps: after binding to phosphate groups by means of the lysine residue at the N-terminus (anchoring), three couples of lysine residues act subsequently to exert a torque in the membrane (twisting) which allows the insertion of aromatic side chains at both termini (insertion) eventually leading to the flip of the amphipathic helix inside the bilayer core (helix flip and internalization).

9.
Eur J Med Chem ; 137: 338-350, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28614758

RESUMO

P. aeruginosa ranks among the top five organisms causing nosocomial infections. Among the many novel strategies for developing new therapeutics against infection, targeting iron uptake mechanism seems promising as P. aeruginosa needs iron for its growth and survival. To scavenge iron, the bacterium produces siderophores possessing a very high affinity towards Fe(III) ions such as pyoverdines. In this work, we decided to study two pyoverdine analogs, aPvd2 and aPvd3, structurally close to the endogen pyoverdine. The pFe constants calculated with the values of formation showed a high affinity of aPvd3 towards Fe(III). Molecular dynamics calculations demonstrated that aPvd3-Fe forms with Fe(III) stable 1:1 complexes in water, whereas aPvd2 does not. Only aPvd3 is able to increase the bacterial growth and represents thus an alternative to pyoverdine for iron acquisition by the bacterium. The aPvd2-3 interaction studies with a lipid membrane indicated that they were unable to interact and to cross the plasma membrane of bacteria by passive diffusion. Consequently, the penetration of aPvd3 is ruled by a transport membrane protein. These results showed that aPvd3 may be used to inhibit pyoverdine uptake or to promote the accumulation and release of antibiotics into the cell following a Trojan horse strategy.


Assuntos
Antibacterianos/farmacologia , Compostos Férricos/farmacologia , Simulação de Dinâmica Molecular , Oligopeptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Compostos Férricos/síntese química , Compostos Férricos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligopeptídeos/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Relação Estrutura-Atividade
10.
Bioelectrochemistry ; 111: 62-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27243445

RESUMO

Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.


Assuntos
Telefone Celular , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ondas de Rádio/efeitos adversos , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Transporte de Elétrons/efeitos da radiação , Humanos , Temperatura , Triptofano/química , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA