Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902892

RESUMO

Currently, extensive research activities are devoted to developing persistent phosphors which extend beyond the visible range. In some emerging applications, long-lasting emission of high-energy photons is required; however, suitable materials for the shortwave ultraviolet (UV-C) band are extremely limited. This study reports a novel Sr2MgSi2O7 phosphor doped with Pr3+ ions, which exhibits UV-C persistent luminescence with maximum intensity at 243 nm. The solubility of Pr3+ in the matrix is analysed by X-ray diffraction (XRD) and optimal activator concentration is determined. Optical and structural properties are characterised by photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) spectroscopy techniques. The obtained results expand the class of UV-C persistent phosphors and provide novel insights into the mechanisms of persistent luminescence.

2.
Sci Rep ; 12(1): 7116, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504944

RESUMO

In the present work, three different Mn2+-doped calcium pyrophosphate (CPP, Ca2P2O7) polymorphs were synthesized by wet co-precipitation method followed by annealing at different temperatures. The crystal structure and purity were studied by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (SS-NMR), and electron paramagnetic resonance (EPR) spectroscopies. Scanning electron microscopy (SEM) was used to investigate the morphological features of the synthesized products. Optical properties were investigated using photoluminescence measurements. Excitation spectra, emission spectra, and photoluminescence decay curves of the samples were studied. All Mn-doped polymorphs exhibited a broadband emission ranging from approximately 500 to 730 nm. The emission maximum was host-dependent and centered at around 580, 570, and 595 nm for γ-, ß-, and α-CPP, respectively.


Assuntos
Pirofosfato de Cálcio , Luminescência , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201933

RESUMO

LaOCl doped with 0-10 mol% Cr was synthesized by thermal decomposition of chlorides. X-ray diffraction (XRD) analysis revealed that incorporation of chromium results in a decrease of the lattice parameter a and a simultaneous increase of the lattice parameter c. The local structure of chromium ions was studied with X-ray photoelectron (XPS), X-ray absorption (XANES), multifrequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy techniques. It was determined that synthesis in oxidizing atmosphere promotes the incorporation of chromium ions predominantly in the 5+ oxidation state. Changes of chromium oxidation state and local environment occur after a subsequent treatment in reducing atmosphere. Spin-Hamiltonian (SH) parameters for a Cr5+ and two types of Cr3+ centers in LaOCl were determined from the EPR spectra simulations.

4.
ACS Appl Mater Interfaces ; 13(20): 24218-24227, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988355

RESUMO

Changes in surface energy and electrical conductivity of polyimide (PI)-based nanocomposite films filled with carbon nanotubes (CNTs) induced by UV exposure are gaining considerable interest in microelectronic, aeronautical, and aerospace applications. However, the underlying mechanism of PI photochemistry and oxidation reactions induced by UV irradiation upon the surface in the presence of CNTs is still not clear. Here, we probed the interplay between CNTs and PIs under UV exposure in the surface properties of CNT/PI nanocomposite films. Changes in contact angles and surface electrical conductivity at the surface of CNT/PI nanocomposite films after UV exposure were measured. The unpaired electron intensity of free radicals generated by UV exposure was monitored by electron paramagnetic resonance. Our study indicates that the covalent interactions between CNTs and radicals generated by UV irradiation on the PI surfaces tailor the surface energy and surface conductivity through anchoring radicals on CNTs. Surprisingly, adding CNTs into PI films exposed to UV leads to antagonistic contributions of dispersion and polar components to the surface energy. The surface electrical conductivity of the CNT/PI nanocomposite films has been improved due to an enhanced hopping behavior with dense π-conjugated CNT sites. To explain the observed changes in surface energy and surface conductivity of CNT/PI nanocomposite films induced by UV exposure, a qualitative model was put forward describing the covalent interactions between UV-induced PI free radicals and CNTs, which govern the chemical nature of surface components. This study is helpful for characterizing and optimizing nanocomposite surface properties by tuning the covalent interactions between components at the nanoscale.

5.
Mater Sci Eng C Mater Biol Appl ; 112: 110918, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409069

RESUMO

In the present work, Fe3+ and Zn2+ co-substituted ß-tricalcium phosphate (ß-TCP) has been synthesized by wet co-precipitation method. Co-substitution level in the range from 1 to 5 mol% has been studied. Thermal decomposition of as-prepared precipitates was shown to be affected by introducing of foreign ions, decreasing the decomposition temperature of precursor. It was determined that partial substitution of Ca2+ by Fe3+ and Zn2+ ions leads to the change in lattice parameters, which gradually decrease as doping level increases. Lattice distortion was also confirmed by means of Raman spectroscopy, which showed gradual change of the peaks shape in the Raman spectra. Rietveld refinement and electron paramagnetic resonance study confirmed that Fe3+ ions occupy only one Ca crystallographic site until Fe3+ and Zn2+ substitution level reaches 5 mol%. All co-substituted samples revealed paramagnetic behavior, magnetization of powders was determined to be linearly dependent on concentration of Fe3+ ions. Cytotoxicity of the synthesized species was estimated by in vivo assay using zebrafish (Danio rerio) and revealed non-toxic nature of the samples. Preparation of ceramic bodies from the powders was performed, however the results obtained on Vickers hardness of the ceramics did not show improvement in mechanical properties induced by co-substitution.


Assuntos
Fosfatos de Cálcio/química , Ferro/química , Magnetismo , Zinco/química , Animais , Fosfatos de Cálcio/síntese química , Fosfatos de Cálcio/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Dureza , Pós/química , Espectroscopia de Mossbauer , Análise Espectral Raman , Temperatura , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA