Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Genomics ; 17(1): 19, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882862

RESUMO

BACKGROUND: Polymorphisms in the interleukin-10 (IL10) gene have been linked to the severity of the patients infected with the viral infections. This study aimed to assess if the IL10 gene polymorphisms rs1800871, rs1800872, and rs1800896 were linked to coronavirus disease 19 (COVID-19) mortality in different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the Iranian population. METHODS: For genotyping IL10 rs1800871, rs1800872, and rs1800896, this study used the polymerase chain reaction-restriction fragment length polymorphism method in 1,734 recovered and 1,450 deceased patients. RESULTS: The obtained finding indicated IL10 rs1800871 CC genotype in the Alpha variant and CT genotype in the Delta variant had a relationship with COVID-19 mortality; however, there was no association between rs1800871 polymorphism and the Omicron BA.5 variant. The COVID-19 mortality rate was associated with IL10 rs1800872 TT genotype in the Alpha and Omicron BA.5 variants and GT in the Alpha and Delta variants. The COVID-19 mortality rate was associated with IL10 rs1800896 GG and AG genotypes in the Delta and Omicron BA.5; nevertheless, there was no association between rs1800896 polymorphism with the Alpha variant. According to the obtained data, the GTA haplotype was the most common of haplotype in different SARS-CoV-2 variants. The TCG haplotype was related to COVID-19 mortality in the Alpha, Delta and Omicron BA.5 variants. CONCLUSION: The IL10 polymorphisms had an impact on COVID-19 infection, and these polymorphisms had different effects in various SARS-CoV-2 variants. To verify the obtained results, further studies should be conducted on various ethnic groups.


Assuntos
COVID-19 , Interleucina-10 , SARS-CoV-2 , Humanos , COVID-19/genética , Interleucina-10/genética , Irã (Geográfico)/epidemiologia , Polimorfismo Genético
2.
Hum Genomics ; 17(1): 54, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328914

RESUMO

BACKGROUND: Clinical severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outcomes could be influenced by genetic polymorphisms in angiotensin I-converting enzyme (ACE1) and ACE2. This study aims to examine three polymorphisms (rs1978124, rs2285666, and rs2074192) on the ACE2 gene and ACE1 rs1799752 (I/D) in patients who have coronavirus disease 2019 (COVID-19) with various SARS-CoV-2 variants. METHODS: Based on polymerase chain reaction-based genotyping, four polymorphisms in the ACE1 and ACE2 genes have been identified in 2023 deceased patients and 2307 recovered patients. RESULTS: The ACE2 rs2074192 TT genotype was associated with the COVID-19 mortality in all three variants, whereas the CT genotype was associated with the Omicron BA.5 and Delta variants. ACE2 rs1978124 TC genotypes were related to COVID-19 mortality in the Omicron BA.5 and Alpha variants, but TT genotypes were related to COVID-19 mortality in the Delta variant. It was found that ACE2 rs2285666 CC genotypes were associated with COVID-19 mortality in Delta and Alpha variants, and CT genotypes in Delta variants. There was an association between ACE1 rs1799752 DD and ID genotypes in the Delta variant and COVID-19 mortality, whereas there was no association in the Alpha or Omicron BA.5 variants. In all variants of SARS-CoV-2, CDCT and TDCT haplotypes were more common. In Omicron BA.5 and Delta, CDCC and TDCC haplotypes were linked with COVID-19 mortality. In addition to COVID-19 mortality, the CICT, TICT, and TICC were significantly correlated. CONCLUSION: The ACE1/ACE2 polymorphisms had an impact on COVID-19 infection, and these polymorphisms had different effects in various SARS-CoV-2 variants. To confirm these results, however, more research needs to be conducted.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , COVID-19/mortalidade , Peptidil Dipeptidase A/genética , Polimorfismo Genético , SARS-CoV-2/genética
3.
Hum Genomics ; 16(1): 60, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403064

RESUMO

BACKGROUND: The interferon-induced transmembrane-protein 3 (IFITM3) is a vital component of the immune system's defense against viral infection. Variants in the IFITM3 gene have been linked to changes in expression and the risk of severe Coronavirus disease 2019 (COVID-19). This study aimed to investigate whether IFITM3 rs6598045, quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) values, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are associated with an increased mortality rate of COVID-19. METHODS: The genotyping of IFITM3 rs6598045 polymorphism was analyzed using the amplification refractory mutation system-polymerase chain reaction in 1342 recovered and 1149 deceased patients positive for SARS-CoV-2. RESULTS: In this study, IFITM3 rs6598045 G allele as minor allele frequency was significantly more common in the deceased patients than in the recovered ones. Furthermore, the highest mortality rates were observed in Delta variant and lowest qPCR Ct values. COVID-19 mortality was associated with IFITM3 rs6598045 GG and AG in Delta variant and IFITM3 rs6598045 AG in Alpha variant. A statistically significant difference was observed in the qPCR Ct values between individuals with GG and AG genotypes and those with an AA genotype. CONCLUSION: A possible correlation was observed between the mortality rate of COVID-19, the G allele of IFITM3 rs6598045, and SARS-CoV-2 variants. However, large-scale research is still required to validate our results.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Alelos , Genótipo , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética
4.
Cell Biol Int ; 47(10): 1728-1736, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369952

RESUMO

Several studies have revealed that vitamin D deficiency is linked to an increased risk of developing coronavirus disease 19 (COVID-19). In individuals with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, vitamin D receptor activation is required to decrease acute respiratory distress syndrome. The purpose of this study was to examine the genotypic distribution and allelic frequencies of CDX2 rs11568820 and EcoRV rs4516035 polymorphisms in COVID-19 patients with various SARS-CoV-2 variants. For genotyping of CDX2 rs11568820 and EcoRV rs4516035 polymorphisms, we used the polymerase chain reaction-restriction fragment length polymorphism technique in 1734 and 1450 recovered and deceased patients, respectively. The results indicated the rate of COVID-19 mortality was associated with CDX2 rs11568820 AA and GA genotypes in the Delta variant and with CDX2 rs11568820 AA in the Omicron BA.5 variant, while no association was shown in the Alpha variant. Therefore, the rate of COVID-19 mortality was associated with EcoRV rs4516035 TC and CC genotypes in the Delta variant, while no association was shown in the Alpha and Omicron BA.5 variants. According to our analysis, the T-G haplotype was more common in all SARS-CoV-2 variants. The C-A haplotype was associated with COVID-19 mortality in the Delta and Omicron BA.5 variants, and the T-A haplotype was related to the Alpha variant. In conclusion, the genotype frequencies of the CDX2 rs11568820 and EcoRV rs4516035 polymorphisms between SARS-CoV-2 variants were significantly different between the deceased patients and recovered patients. However, more studies should be done to confirm the results.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fator de Transcrição CDX2/genética , COVID-19/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , SARS-CoV-2/genética
5.
Cytokine ; 157: 155957, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792282

RESUMO

BACKGROUND AND AIMS: Interferon-induced transmembrane protein 3 (IFITM3) plays a critical role in the adaptive and innate immune response by preventing membrane hemifusion between the host and viral cell cytoplasm. This study aimed to evaluate whether IFITM3 rs12252 polymorphism is related to an increased mortality rate of coronavirus disease 2019 (COVID-19). METHODS: The IFITM3 rs12252 polymorphism was genotyped using the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in 548 dead and 630 improved patients positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: In the present study, the minor allele frequency of IFITM3 rs12252 (C) was significantly more frequent in dead patients than in improved cases. The results of the multivariate logistic regression analysis indicated that the lower lipid profiles, PCR Ct value, 25-hydroxyvitamin D, and uric acid and higher levels of erythrocyte sedimentation rate (ESR), liver enzymes, and creatinine, and IFITM3 rs12252 CC genotypes were related to the COVID-19 infection mortality. CONCLUSIONS: In summary, our findings suggested a possible link between the mortality of COVID-19 infection, the CC genotypes of IFITM3 rs12252, and clinical parameters. Further investigations are required worldwide to prove the link relationship of COVID-19 mortality with host genetic factors.


Assuntos
COVID-19 , Influenza Humana , COVID-19/genética , Predisposição Genética para Doença , Humanos , Interferons/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2
6.
Virol J ; 19(1): 156, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192760

RESUMO

BACKGROUND: Tripartite motif-containing 28 (TRIM28) is an impressive regulator of the epigenetic control of the antiviral immune response. This study evaluated if the differential expression of TRIM28 correlates with the severity of coronavirus disease 2019 (COVID-19) infection. METHODS: A total of 330 COVID-19 patients, including 188 mild and 142 severe infections, and 160 healthy controls were enrolled in this study. Quantitative real-time polymerase chain reaction (qPCR) was used to determine the expression levels of TRIM28 in the studied patients. RESULTS: TRIM28 mRNA levels were significantly lower in both groups of patients versus the control group and in the severe group indicated further reduction in comparison to mild infection. The multivariate logistic regression analysis showed the mean age, lower levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, lower 25-hydroxyvitamin D, and PCR cycle threshold (Ct) value and higher levels of erythrocyte sedimentation rate (ESR) and differential expression of TRIM28 were linked to the severity of COVID-19 infection. CONCLUSION: The results of this study proved that the downregulation of TRIM28 might be associated with the severity of COVID-19 infection. Further studies are required to determine the association between the COVID-19 infection severity and TRIM family proteins.


Assuntos
COVID-19 , Antivirais , Colesterol , Humanos , Lipoproteínas HDL , Lipoproteínas LDL , RNA Mensageiro , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
7.
Int J Immunogenet ; 49(5): 325-332, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029284

RESUMO

Host genetic factors may be correlated with the severity of coronavirus disease 2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE2) plays a vital role in viral cell entrance. The current study aimed to evaluate the association of ACE2 rs2285666 polymorphism and clinical parameters with COVID-19 mortality. The ACE2 rs2285666 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism in 556 recovered and 522 dead patients. In this study, the frequency of ACE2 rs2285666 CC was significantly higher than TT genotype in dead patients. The multivariate logistic regression analysis results showed that the higher levels of alanine aminotransferase, alkaline phosphatase, creatinine, erythrocyte sedimentation rate, and C-reactive protein and the low levels of uric acid, cholesterol, low density lipoprotein, 25-hydroxyvitamin D, real-time PCR Ct values, and ACE2 rs2285666 CC genotype were associated with increased mortality rates after COVID-19. In conclusion, our findings demonstrated a possible link between COVID-19 mortality, clinical parameters, and ACE2 rs2285666 CC. Further research is required to confirm these results.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19 , COVID-19/genética , Humanos , Irã (Geográfico)/epidemiologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
8.
Virol J ; 18(1): 221, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775984

RESUMO

BACKGROUND: The recent pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has elevated several clinical and scientific questions. These include how host genetic factors influence the pathogenesis and disease susceptibility. Therefore, the aim of this study was to evaluate the impact of interferon lambda 3 and 4 (IFNL3/4) gene polymorphisms and clinical parameters on the resistance and susceptibility to coronavirus disease 2019 (COVID-19) infection. METHODS: A total of 750 SARS-CoV-2 positive patients (375 survivors and 375 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNL3 (rs12979860, rs8099917, and rs12980275) and IFNL4 rs368234815 were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: In this study, a higher viral load (low PCR Ct value) was shown in nonsurvivor patients. In survivor patients, the frequency of the favorable genotypes of IFNL3/4 SNPs (rs12979860 CC, rs12980275 AA, rs8099917 TT, and rs368234815 TT/TT) was significantly higher than in nonsurvivor patients. Multivariate logistic regression analysis has shown that a higher low-density lipoprotein (LDL), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and PCR Ct value, and lower 25-hydroxyvitamin D, and also IFNL3 rs12979860 TT, IFNL3 rs8099917 GG, IFNL3 rs12980275 GG, and IFNL4 rs368234815 ∆G/∆G genotypes were associated with the severity of COVID-19 infection. CONCLUSIONS: The results of this study proved that the severity of COVID-19 infection was associated with clinical parameters and unfavorable genotypes of IFNL3/IFNL4 SNPs. Further studies in different parts of the world are needed to show the relationship between severity of COVID-19 infection and host genetic factors.


Assuntos
COVID-19/diagnóstico , Interferons/genética , Interleucinas/genética , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Antivirais/uso terapêutico , COVID-19/epidemiologia , Suscetibilidade a Doenças , Feminino , Genótipo , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética , Índice de Gravidade de Doença
9.
Environ Res ; 195: 110898, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610583

RESUMO

On December 31, 2019, the novel human coronavirus (COVID-19) was emerged in Wuhan city, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is a much controversial debate about the major pathways of transmission of the virus including airborne route. The present work is a systematic literature review (SR) aimed to assess the association of air pollution especially particulate matter pollution in the transmission and acceleration of the spread of SARS-CoV-2. The systematic literature search was performed to identify the available studies published through October 31, 2020 concerning the transmission of the disease and particulate matter air pollution in four international electronic databases. From the results of the included studies, there are suggestions that atmospheric particulate matter pollution plays a role in the SARS-CoV-2 spread, but the literature has not confirmed that it enhances the transmission although some studies have proposed that atmospheric particulate matter can operate as a virus carrier, promoting its spread. Therefore, although PM concentration alone cannot be effective in spreading the COVID-19 disease, other meteorological and environmental parameters including size of particles in ambient air, weather conditions, wind speed, relative humidity (RH) and temperature are involved. Therefore, it is necessary to consider all influencing parameters to prevent the spreading of COVID-19 disease. More studies are required to strengthen the scientific evidence and support more definitive conclusions.


Assuntos
Poluição do Ar , COVID-19 , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Cidades , Humanos , Material Particulado/análise , Prevalência , SARS-CoV-2
10.
Parasitology ; 147(12): 1255-1262, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32618524

RESUMO

Plasmodium falciparum is the main cause of severe malaria in humans that can lead to death. There is growing evidence of drug-resistance in P. falciparum treatment, and the design of effective vaccines remains an ongoing strategy to control the disease. On the other hand, the recognition of specific diagnostic markers for P. falciparum can accelerate the diagnosis of this parasite in the early stages of infection. Therefore, the identification of novel antigenic proteins especially by proteomic tools is urgent for vaccination and diagnosis of P. falciparum. The proteome diversity of the life cycle stages of P. falciparum, the altered proteome of P. falciparum-infected human sera and altered proteins in P. falciparum-infected erythrocytes could be proposed as appropriate proteins for the aforementioned aims. Accordingly, this review highlights and proposes different proteins identified using proteomic approaches as promising markers in the diagnosis and vaccination of P. falciparum. It seems that most of the candidates identified in this study were able to elicit immune responses in the P. falciparum-infected hosts and they also played major roles in the life cycle, pathogenicity and key pathways of this parasite.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum , Plasmodium falciparum , Proteoma , Animais , Antimaláricos/farmacologia , Biomarcadores/metabolismo , Resistência a Medicamentos/genética , Eritrócitos/parasitologia , Genes de Protozoários , Humanos , Estágios do Ciclo de Vida/imunologia , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Proteoma/imunologia , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
J Cell Physiol ; 234(7): 9943-9955, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30536402

RESUMO

Dimethyl fumarate (DMF) is an important oral treatment option for various autoimmune diseases, such as multiple sclerosis (MS) and psoriasis. DMF and its dynamic metabolite, monomethyl fumarate (MMF) are the major compounds that exert therapeutic effects on several pathologic conditions in part, through downregulation of immune responses. The exact mechanism of DMF is yet to be fully understood even though its beneficial effects on the immune system are extensively studied. It has been shown that DMF/MMF can affect various immune cells, which can get involved in both the naive and adaptive immune systems, such as T cells, B cells, dendritic cells, macrophages, neutrophils, and natural killer cells. It is suggested that DMF/MMF may exert their effect on immune cells through inhibition of nuclear factor-κB translocation, upregulation of nuclear factor erythroid-derived 2(E2)-related factor antioxidant pathway, and activation of hydroxyl carboxylic acid receptor 2. In this review, the mechanisms underlying the modulatory functions of DMF or MMF on the main immune cell populations involved in the immunopathogenesis of MS are discussed.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Fumarato de Dimetilo/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Animais , Fumarato de Dimetilo/efeitos adversos , Fumarato de Dimetilo/farmacocinética , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/fisiopatologia , Imunossupressores/efeitos adversos , Imunossupressores/farmacocinética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Transdução de Sinais
12.
J Cell Physiol ; 234(5): 5478-5487, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417346

RESUMO

RNA helicase p68 or DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) is a unique member of the highly conserved protein family, which is involved in a broad spectrum of biological processes, including transcription, translation, precursor messenger RNA processing or alternative splicing, and microRNA (miRNA) processing. It has been shown that p68 is necessary for cell growth and participates in the early development and maturation of some organs. Interestingly, p68 is a transcriptional coactivator of numerous oncogenic transcription factors, including nuclear factor-κß (NF-κß), estrogen receptor α (ERα), ß-catenin, androgen receptor, Notch transcriptional activation complex, p53 and signal transducer, and activator of transcription 3 (STAT3). Recent studies on the role of p68 (DDX5) in multiple dysregulated cellular processes in various cancers and its abnormal expression indicate the importance of this factor in tumor development. Discussion of the precise role of p68 in cancer is complex and depends on the cellular microenvironment and interacting factors. In terms of the deregulated expression of p68 in breast cancer and the high prevalence of this cancer among women, it can be informative to review the precise function of this factor in the breast cancer. Therefore, an attempt will be made in this review to clarify the tumorigenic function of p68 in association with its targeting potential for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , RNA Helicases DEAD-box/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , Inibidores Enzimáticos/uso terapêutico , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais
13.
J Cell Physiol ; 233(3): 2032-2057, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28233320

RESUMO

Tumor cells overcome anti-tumor responses in part through immunosuppressive mechanisms. There are several immune modulatory mechanisms. Among them, adenosine is an important factor which is generated by both cancer and immune cells in tumor microenvironment to suppress anti-tumor responses. Two cell surface expressed molecules including CD73 and CD39 catalyze the generation of adenosine from adenosine triphosphate (ATP). The generation of adenosine can be enhanced under metabolic stress like tumor hypoxic conditions. Adenosine exerts its immune regulatory functions through four different adenosine receptors (ARs) including A1, A2A, A2B, and A3 which are expressed on various immune cells. Several studies have indicated the overexpression of adenosine generating enzymes and ARs in various cancers which was correlated with tumor progression. Since the signaling of ARs enhances tumor progression, their manipulation can be promising therapeutic approach in cancer therapy. Accordingly, several agonists and antagonists against ARs have been designed for cancer therapy. In this review, we will try to clarify the role of different ARs in the immunopathogenesis, as well as their role in the treatment of cancer.


Assuntos
Adenosina/biossíntese , Neoplasias/imunologia , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Evasão Tumoral/imunologia , 5'-Nucleotidase/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Camundongos , Transdução de Sinais/imunologia
14.
J Cell Physiol ; 233(10): 7165-7177, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741783

RESUMO

CD73 facilitates tumor growth by upregulation of the adenosine (immunosuppressive factor) in the tumor microenvironment, however, its precise molecular mechanisms is not precisely understood. Regarding the importance of angiogenesis in tumor development and spreading, we decided to assign the anti-angiogenic effects of CD73 suppression. We used chitosan lactate (ChLa) nanoparticles (NPs) to deliver CD73-specific small interfering RNA (siRNA) into cancer cells. Our results showed that treatment of the 4T1 cells with CD73-specific siRNA-loaded NPs led to potent inhibition of cancer cell proliferation and cell cycle arrest, in vitro. This growth arrest was correlated with downregulation of angiogenesis-related molecules including vascular endothelial growth factor (VEGF)-A, VEGF-R2, interleukin (IL)-6, and transforming growth factor (TGF)-ß. Moreover, administration of NPs loaded with CD73-siRNA into 4T1 breast cancer-bearing mice led to tumor regression and increased mice survival time accompanied with downregulation of angiogenesis (VEGF-A, VEGF-R2, VE-Cadherin, and CD31) and lymphangiogenesis (VEGF-C and LYVE-1)-related genes in the tumor site. Furthermore, the expression of angiogenesis promoting factors including IL-6, TGF-ß, signal transducer, and activator of transcription (STAT)3, hypoxia inducible factor (HIF)-1α, and cyclooxygenase (COX)2 was decreased after the CD73 suppression in mice. Moreover, analysis of leukocytes derived from the tumor samples, spleen, and regional lymph nodes showed that they had lower capability for secretion of angiogenesis promoting factors after CD73-silencing. These results indicate that suppression of tumor development by downregulation of CD73 is in part related to angiogenesis arrest. These findings imply a promising strategy for inhibiting tumor growth accompanied with suppressing the angiogenesis process.


Assuntos
5'-Nucleotidase/genética , Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/genética , Neovascularização Patológica/genética , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , RNA Interferente Pequeno/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
16.
Scand J Clin Lab Invest ; 77(4): 247-252, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28281380

RESUMO

Interleukin-28B (IL28B) single-nucleotide polymorphisms (SNPs) constitute important host-related factors influencing the response rate to Hepatitis C virus (HCV) standard antiviral therapy. In the last few years, several new technologies for SNP detection have been developed. However, the sensitivity and specificity of various methods are different and needs evaluation. Five different methods (resolution melting curve [RMC], polymerase chain reaction-restriction fragment length polymorphism [PCR-RFLP], PCR-sequencing analysis, amplification refractory mutation system [ARMS], and zip nucleic acid probe-based real-time PCR [ZNA]) were developed for genotyping rs12979860 associated with IL28B. In this study, limit of detection (LD), costs and turnaround time of these methods were compared in 350 subjects. As for IL28B rs12979860 polymorphisms, 348/350 (99.4%) samples were consistent among the five methods, while results for 2/350 (0.57%) samples were concordant by ZNAs and PCR-sequencing, and discordant by other methods. Without considering the cost of DNA extraction, the price of each reaction for ARMS-PCR, RMC, PCR-RFLP, ZNA and PCR-sequencing were respectively: US$3.10, US$5.0, US$5.50, US$8.50 and US$17.0. RMC was the fastest method, while the ZNA method was easy to use, reliable and effective. Lower LD was determined to be 50-60 copies/µL for the PCR-RFLP, RMC and ARMS-PCR assays; whilst ZNA assay was able to detect 2-3 copies/µL. In conclusion, in the current study, all four methods are suitable for IL28B rs12979860 genotyping, but the ZNA assay can be a reliable tool. Due to its lower LD for SNP identification, this method is better than others for detecting this type of polymorphism.


Assuntos
Hepatite C Crônica/genética , Interleucinas/genética , Genótipo , Hepatite C/genética , Humanos , Interferons , Limite de Detecção , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real/economia
17.
Tumour Biol ; 36(10): 7339-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330296

RESUMO

Tumor cells use several mechanisms such as soluble immune modulators or suppressive immune cells to evade from anti-tumor responses. Immunomodulatory cytokines, such as transforming growth factor-ß, interleukin (IL)-10, and IL-35, soluble factors, such as adenosine, immunosuppressive cells, such as regulatory T cells, NKT cells and myeloid-derived suppressor cells (MDSCs), are the main orchestra leaders involved in immune suppression in cancer by which tumor cells can freely expand without immune cell-mediated interference. Among them, MDSCs have attracted much attention as they represent a heterogenous population derived from myeloid progenitors that are expanded in tumor condition and can also shift toward other myeloid cells, such as macrophages and dendritic cells, after tumor clearing. MDSCs exert their immunosuppressive effects through various immune and non-immune mechanisms which make them as potent tumor-promoting cells. Although, there are several studies regarding the immunobiology of MDSCs in different solid tumors, little is known about the precise characteristics of these cells in hematological malignancies, particularly B cell malignancies. In this review, we tried to clarify the precise role of MDSCs in B cell-derived malignancies.


Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Imunidade Celular/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Humanos
18.
Sci Rep ; 14(1): 703, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184750

RESUMO

The serum level of C-reactive protein (CRP) is a significant independent risk factor for Coronavirus disease 2019 (COVID-19). A link was found between serum CRP and genetic diversity within the CRP gene in earlier research. This study examined whether CRP rs1205 and rs1800947 polymorphisms were associated with COVID-19 mortality among various severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) variants. We genotyped CRP rs1205 and rs1800947 polymorphisms in 2023 deceased and 2307 recovered patients using the polymerase chain reaction-restriction fragment length polymorphism method. There was a significant difference between the recovered and the deceased patients in terms of the minor allele frequency of CRP rs1205 T and rs1800947 G. In all three variants, COVID-19 mortality rates were associated with CRP rs1800947 GG genotype. Furthermore, CRP rs1205 CC and rs1800947 GG genotypes showed higher CRP levels. It was found that the G-T haplotype was prevalent in all SARS-CoV-2 variants. The C-C and C-T haplotypes were statistically significant in Delta and Omicron BA.5 variants, respectively. In conclusion, polymorphisms within the CRP gene may relate to serum CRP levels and mortality among COVID-19 patients. In order to verify the utility of CRP polymorphism correlation in predicting COVID-19 mortality, a replication of these results is needed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteína C-Reativa/genética , Polimorfismo Genético
19.
Arch Med Res ; 54(4): 310-318, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032232

RESUMO

BACKGROUND AND AIM: Low vitamin D levels are associated with the severity of coronavirus disease 19 (COVID-19). Vitamin D receptor gene polymorphisms, such as Tru9I rs757343 and FokI rs2228570, have been suggested to be potential risk factors for severe COVID-19 outcomes. This study investigated how Tru9I rs757343 and FokI rs2228570 polymorphisms influenced the mortality rate of COVID-19 in relation to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. METHODS: The polymerase chain reaction-restriction fragment length polymorphism assay was used to genotype Tru9I rs757343 and FokI rs2228570 genotypes in 1,734 recovered and 1,450 deceased patients. RESULTS: Our results demonstrated that the high mortality rate was correlated with FokI rs2228570 TT genotype in all three variants but was much higher in the Omicron BA.5 variant than in the Alpha and Delta variants. Furthermore, in patients infected with the Delta variant, FokI rs2228570 CT genotype was more highly correlated with the mortality rate compared to other variants. Thus, a high mortality rate was correlated with the Tru9I rs757343 AA genotype in the Omicron BA.5 variant, whereas this relationship was not observed in the other two variants. The T-A haplotype was related to COVID-19 mortality in all three variants, but its effect was more pronounced in the Alpha variant. Moreover, the T-G haplotype was significantly associated with all three variants. CONCLUSION: Our findings showed that the effects of Tru9I rs757343 and FokI rs2228570 polymorphisms were related to SARS-CoV-2 variants. However, further studies are still required to validate our findings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética
20.
Sci Rep ; 13(1): 3612, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869206

RESUMO

A growing body of research has shown how important vitamin D is in the prognosis of coronavirus disease 19 (COVID-19). The vitamin D receptor is necessary for vitamin D to perform its effects, and its polymorphisms can help in this regard. Therefore, we aimed to evaluate whether the association of ApaI rs7975232 and BsmI rs1544410 polymorphisms in different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants were influential in the outcomes of COVID-19. The polymerase chain reaction-restriction fragment length polymorphism method was utilized to determine the different genotypes of ApaI rs7975232 and BsmI rs1544410 in 1734 and 1450 patients who had recovered and deceased, respectively. Our finding revealed that the ApaI rs7975232 AA genotype in the Delta and Omicron BA.5 and the CA genotype in the Delta and Alpha variants were associated with higher mortality rate. Also, the BsmI rs1544410 GG genotype in the Delta and Omicron BA.5 and the GA genotype in the Delta and Alpha variants were related to a higher mortality rate. The A-G haplotype was linked with COVID-19 mortality in both the Alpha and Delta variants. The A-A haplotype for the Omicron BA.5 variants was statistically significant. In conclusion, our research revealed a connection between SARS-CoV-2 variants and the impacts of ApaI rs7975232 and BsmI rs1544410 polymorphisms. However, more research is still needed to substantiate our findings.


Assuntos
COVID-19 , Receptores de Calcitriol , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/genética , Vitamina D , Vitaminas , Receptores de Calcitriol/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA