Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 15(11): 7633-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26478949

RESUMO

Nanophotonic structures make it possible to precisely engineer the optical response at deep subwavelength scales. However, a fundamental understanding of the general performance limits remains a challenge. Here we use extensive electrodynamics simulations to demonstrate that the so-called f-sum rule sets a strict upper bound to the light extinction by nanostructures regardless their internal interactions and retardation effects. In particular, we show that the f-sum rule applies to arbitrarily complex plasmonic metal structures that exhibit an extraordinary spectral sensitivity to size, shape, near-field coupling effects, and incident polarization. The results may be used for benchmarking light scattering and absorption efficiencies, thus imposing fundamental limits on solar light harvesting, biomedical photonics, and optical communications.

2.
Opt Express ; 22(2): 2031-42, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515212

RESUMO

Plasmonic glasses composed of metallic inclusions in a host dielectric medium are investigated for their optical properties. Such structures characterized by short-range order can be easily fabricated using bottom-up, self-organization methods and may be utilized in a number of applications, thus, quantification of their properties is important. We show, using T-Matrix calculations of 1D, 2D, and 3D plasmonic glasses, that their plasmon resonance position oscillates as a function of the particle spacing yielding blue- and redshifts up to 0.3 eV in the visible range with respect to the single particle surface plasmon. Their properties are discussed in light of an analytical model of an average particle's polarizability that originates from a coupled dipole methodology.

3.
Opt Express ; 22(21): 24994-5004, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401533

RESUMO

Nanometer-sized metal particles exhibit broadening of the localized surface plasmon resonance (LSPR) in comparison to its value predicted by the classical Mie theory. Using our model for the LSPR dependence on non-local surface screening and size quantization, we quantitatively relate the observed plasmon width to the nanoparticle radius R and the permittivity of the surrounding medium ε(m). For Ag nanospheres larger than 8 nm only the non-local dynamical effects occurring at the surface are important and, up to a diameter of 25 nm, dominate over the bulk scattering mechanism. Qualitatively, the LSPR width is inversely proportional to the particle size and has a nonmonotonic dependence on the permittivity of the host medium, exhibiting for Ag a maximum at ε(m) ≈ 2.5. Our calculated LSPR width is compared with recent experimental data.


Assuntos
Nanosferas/química , Espalhamento de Radiação , Prata/química , Ressonância de Plasmônio de Superfície , Absorção de Radiação , Cor , Tamanho da Partícula , Fatores de Tempo
4.
Opt Express ; 20(1): 524-33, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274374

RESUMO

Ultrasensitive detectors based on localized surface plasmon resonance refractive index sensing are capable of detecting very low numbers of molecules for biochemical analysis. It is well known that the sensitivity of such sensors crucially depends on the spatial distribution of the electromagnetic field around the metal surface. However, the precise connection between local field enhancement and resonance shift is seldom discussed. Using a quasistatic approximation, we developed a model that relates the sensitivity of a nanoplasmonic resonator to the local field in which the analyte is placed. The model, corroborated by finite-difference time-domain simulations, may be used to estimate the magnitude of the shift as a function of the properties of the sensed object - permittivity and volume - and its location on the surface of the resonator. It requires only a computation of the resonant field induced by the metal structure and is therefore suitable for numerical optimization of nanoplasmonic sensors.


Assuntos
Modelos Químicos , Nanopartículas/química , Ressonância de Plasmônio de Superfície/métodos , Adesividade , Simulação por Computador , Luz , Espalhamento de Radiação
5.
Phys Rev Lett ; 109(24): 247401, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368376

RESUMO

The optical response of metallic nanoparticle arrays is dominated by localized surface plasmon excitations and is the sum of individual particle contributions modified by interparticle coupling that depends on specific array geometry. We demonstrate a so far unexplored distinct oscillatory behavior of the plasmon peak position, full width at half maximum, and extinction efficiency in large area amorphous arrays of Au nanodisks, which depend on the minimum particle center-to-center distance in the array. Amorphous arrays exhibit short-range order and are completely random at long distances. In our theoretical analysis we introduce a film of dipoles approach, within the framework of the coupled dipole approximation, which describes the array as an average particle surrounded by a continuum of dipoles with surface densities determined by the pair correlation function of the array.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Químicos , Oscilometria/métodos , Óptica e Fotônica/métodos , Ressonância de Plasmônio de Superfície
6.
Nano Lett ; 10(8): 3135-41, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698628

RESUMO

For ultrathin films of a given material, light absorption is proportional to the film thickness. However, if the optical constants of the film are chosen in an optimal way, light absorption can be high even for extremely thin films and optical path length. We derive the optimal conditions and show how the maximized absorptance depends on film thickness. It is then shown that the optimal situation can be emulated by tuning of the geometric parameters in feasible nanocomposites combining plasmonic materials with semiconductors. Useful design criteria and estimates for the spatial absorption-distribution over the composite materials are provided. On the basis of efficient exchange of oscillator strength between the plasmonic and semiconductor constituents, a high quantum yield for semiconductor absorption can be achieved. The results are far-reaching with particularly promising opportunities for plasmonic solar cells.

7.
Opt Express ; 18 Suppl 3: A343-56, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21165065

RESUMO

For ultrathin (~10 nm) nanocomposite films of plasmonic materials and semiconductors, the absorptance of normal incident light is typically limited to about 50%. However, through addition of a non-absorbing spacer with a highly reflective backside to such films, close to 100% absorptance can be achieved at a targeted wavelength. Here, a simple analytic model useful in the long wavelength limit is presented. It shows that the spectral response can largely be characterized in terms of two wavelengths, associated with the absorber layer itself and the reflective support, respectively. These parameters influence both absorptance peak position and shape. The model is employed to optimize the system towards broadband solar energy conversion, with the spectrally integrated plasmon induced semiconductor absorptance as a figure of merit. Geometries optimized in this regard are then evaluated in full finite element calculations which demonstrate conversion efficiencies of up to 64% of the Shockley-Queisser limit. This is achieved using only the equivalence of about 10 nanometer composite material, comprising Ag and a thin film solar cell layer of a-Si, CuInSe2 or the organic semiconductor MDMO-PPV. A potential for very resource efficient solar energy conversion based on plasmonics is thus demonstrated.

8.
Nanoscale ; 10(15): 7016-7025, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29611595

RESUMO

ZnO has been known for a long time to be a highly efficient luminescent material. In the last few years, the experimental investigation of the luminescent properties of colloidal ZnO nanocrystals in the nanometer range of sizes has attracted a lot of interest for their potential applications in light-emitting diodes and other optical devices and in this work we approach the problem from a theoretical perspective. Here, we develop a simple theory for the green photoluminescence of ZnO quantum dots (QDs) that allows us to understand and rationalize several experimental findings on fundamental grounds. We study the spectrum of light emitted in the radiative recombination of a conduction band electron with a deeply trapped hole and find that the experimental behavior of this emission band with particle size can be understood in terms of quantum size effects of the electronic states and their overlap with the deep hole. We focus the comparison of our results on detailed experiments performed for colloidal ZnO nanoparticles in ethanol and find that the experimental evolution of the luminescent signal with particle size at room temperature can be better reproduced by assuming the deep hole to be localized near the surface of the nanoparticles. However, the experimental behavior of the intensity and the decay time of the signal with temperature can be rationalized in terms of holes predominantly trapped near the center of the nanoparticles at low temperatures being transferred to surface defects at room temperature. Furthermore, the calculated values of the radiative lifetimes are comparable to the experimental values of the decay time of the visible emission signal. We also study the visible emission band as a function of the number of electrons in the conduction band of the nanoparticle, finding a pronounced dependence of the radiative lifetime but a weak dependence of the energetic position of the maximum intensity.

9.
J Phys Chem Lett ; 8(2): 524-530, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28067530

RESUMO

Doped semiconductor quantum dots are a new class of plasmonic systems exhibiting infrared resonances. At ultralow concentrations of charge carriers that can be achieved by controlled doping, only few carriers occupy each quantum dot; therefore, a spectrum with well-defined atomic-like peaks is expected. Here we investigate theoretically how surface imperfections and inhomogeneities in shape and morphology (surface "roughness") always present in these nanocrystals, randomize their energy levels, and blur the atomic-like features. We assume a Gaussian distribution of each energy level and use their standard deviation σ as a measure of the nanocrystals' roughness. For nearly perfect nanospheres with small roughness (σ), the spectrum exhibits well-defined peaks. However, increasing roughness effectively randomizes the energy level distribution, and when σ approaches 15% of the nanoparticle's Fermi energy, any trace of an atomic-like structure is lost in the spectrum, and a continuous yet few-conduction-electron localized surface plasmon resonance emerges.

10.
J Phys Chem Lett ; 6(10): 1847-53, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26263259

RESUMO

Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

11.
J Phys Chem Lett ; 3(10): 1275-85, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-26286771

RESUMO

If the active layer of efficient solar cells could be made 100 times thinner than in today's thin film devices, their economic competitiveness would greatly benefit. However, conventional solar cell materials do not have the optical capability to allow for such thickness reductions without a substantial loss of light absorption. To address this challenge, the use of plasmon resonances in metal nanostructures to trap light and create charge carriers in a nearby semiconductor material is an interesting opportunity. In this Perspective, recent progress with regards to ultrathin (∼10 nm) plasmonic nanocomposites is reviewed. Their optimal internal geometry for plasmon near-field induced absorption is discussed, and a zero thickness effective medium representation is used to optimize stacks including an Al back reflector for photovoltaics. This shows that high conversion efficiencies (>20%) are possible even when taking surface scattering effects and thin passivating layers inserted between the metal and semiconductor into account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA