Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 136(5): 839-851, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19217150

RESUMO

A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2(+/-) mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy.


Assuntos
Vasos Sanguíneos/citologia , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Oxigênio/metabolismo , Animais , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Forma Celular , Proteínas de Ligação a DNA/genética , Células Endoteliais/citologia , Glicólise , Heterozigoto , Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Proteínas Imediatamente Precoces/genética , Camundongos , Neoplasias/patologia , Pró-Colágeno-Prolina Dioxigenase
2.
EMBO J ; 37(9)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29615453

RESUMO

The formation of neurites is an important process affecting the cognitive abilities of an organism. Neurite growth requires the addition of new membranes, but the metabolic remodeling necessary to supply lipids for membrane expansion is poorly understood. Here, we show that synaptic activity, one of the most important inducers of neurite growth, transcriptionally regulates the expression of neuronal glucose transporter Glut3 and rate-limiting enzymes of glycolysis, resulting in enhanced glucose uptake and metabolism that is partly used for lipid synthesis. Mechanistically, CREB regulates the expression of Glut3 and Siah2, the latter and LDH activity promoting the normoxic stabilization of HIF-1α that regulates the expression of rate-limiting genes of glycolysis. The expression of dominant-negative HIF-1α or Glut3 knockdown blocks activity-dependent neurite growth in vitro while pharmacological inhibition of the glycolysis and specific ablation of HIF-1α in early postnatal mice impairs the neurite architecture. These results suggest that the manipulation of neuronal glucose metabolism could be used to treat some brain developmental disorders.


Assuntos
Estruturas da Membrana Celular/metabolismo , Neuritos/metabolismo , Sinapses/metabolismo , Animais , Estruturas da Membrana Celular/genética , Estruturas da Membrana Celular/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 3/biossíntese , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neuritos/patologia , Ratos , Ratos Sprague-Dawley , Sinapses/genética , Sinapses/patologia , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
3.
J Allergy Clin Immunol ; 145(1): 199-214.e11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605740

RESUMO

BACKGROUND: Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1ß, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE: We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS: LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS: LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1ß, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1ß stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1ß-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION: Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1ß/IL-17 axis.


Assuntos
Imunidade Adaptativa , Sistema y+L de Transporte de Aminoácidos/imunologia , Imunidade Inata , Transportador 1 de Aminoácidos Neutros Grandes/imunologia , Psoríase/imunologia , Pele/imunologia , Células Th17/imunologia , Sistema y+L de Transporte de Aminoácidos/genética , Animais , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , Camundongos Transgênicos , Psoríase/genética , Psoríase/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/patologia , Células Th17/patologia
4.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884763

RESUMO

The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.


Assuntos
Autofagia/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/fisiologia , Neurregulinas/metabolismo , Receptor de Insulina/biossíntese , Células 3T3 , Adipócitos/metabolismo , Animais , Linhagem Celular , Cistinil Aminopeptidase/biossíntese , Citocinas/biossíntese , Desoxiglucose/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/biossíntese , Inflamação/patologia , Insulina/metabolismo , Camundongos , Neurregulinas/biossíntese , Neurregulinas/genética , Proteínas Qa-SNARE/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genética
5.
Liver Int ; 40(10): 2553-2567, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432822

RESUMO

BACKGROUND & AIMS: Molecular mechanisms by which hypoxia might contribute to hepatosteatosis, the earliest stage in non-alcoholic fatty liver disease (NAFLD) pathogenesis, remain still to be elucidated. We aimed to assess the impact of hypoxia-inducible factor 2α (HIF2α) on the fatty acid translocase CD36 expression and function in vivo and in vitro. METHODS: CD36 expression and intracellular lipid content were determined in hypoxic hepatocytes, and in hypoxic CD36- or HIF2α -silenced human liver cells. Histological analysis, and HIF2α and CD36 expression were evaluated in livers from animals in which von Hippel-Lindau (Vhl) gene is inactivated (Vhlf/f -deficient mice), or both Vhl and Hif2a are simultaneously inactivated (Vhlf/f Hif2α/f -deficient mice), and from 33 biopsy-proven NAFLD patients and 18 subjects with histologically normal liver. RESULTS: In hypoxic hepatocytes, CD36 expression and intracellular lipid content were augmented. Noteworthy, CD36 knockdown significantly reduced lipid accumulation, and HIF2A gene silencing markedly reverted both hypoxia-induced events in hypoxic liver cells. Moreover livers from Vhlf/f -deficient mice showed histologic characteristics of non-alcoholic steatohepatitis (NASH) and increased CD36 mRNA and protein amounts, whereas both significantly decreased and NASH features markedly ameliorated in Vhlf/f Hif2αf/f -deficient mice. In addition, both HIF2α and CD36 were significantly overexpressed within the liver of NAFLD patients and, interestingly, a significant positive correlation between hepatic transcript levels of CD36 and erythropoietin (EPO), a HIF2α -dependent gene target, was observed in NAFLD patients. CONCLUSIONS: This study provides evidence that HIF2α drives lipid accumulation in human hepatocytes by upregulating CD36 expression and function, and could contribute to hepatosteatosis setup.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Antígenos CD36/genética , Ácidos Graxos , Humanos , Hipóxia , Fígado , Camundongos
6.
Mol Cell ; 48(5): 681-91, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23103253

RESUMO

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation. Here we show that activation of the HIF2α pathway increases mTORC1 activity by upregulating expression of the amino acid carrier SLC7A5. At the molecular level we also show that HIF2α binds to the Slc7a5 proximal promoter. Our findings identify a link between the oxygen-sensing HIF2α pathway and mTORC1 regulation, revealing the molecular basis of the tumor-promoting properties of HIF2α in von Hippel-Lindau-deficient cells. We also describe relevant physiological scenarios, including those that occur in liver and lung tissue, wherein HIF2α or low-oxygen tension drive mTORC1 activity and SLC7A5 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteínas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Fígado/metabolismo , Pulmão/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos SCID , Complexos Multiproteicos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas/genética , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Tempo , Transfecção , Carga Tumoral , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321829

RESUMO

Cellular response to hypoxia is controlled by the hypoxia-inducible transcription factors HIF1α and HIF2α. Some genes are preferentially induced by HIF1α or HIF2α, as has been explored in some cell models and for particular sets of genes. Here we have extended this analysis to other HIF-dependent genes using in vitro WT8 renal carcinoma cells and in vivo conditional Vhl-deficient mice models. Moreover, we generated chimeric HIF1/2 transcription factors to study the contribution of the HIF1α and HIF2α DNA binding/heterodimerization and transactivation domains to HIF target specificity. We show that the induction of HIF1α-dependent genes in WT8 cells, such as CAIX (CAR9) and BNIP3, requires both halves of HIF, whereas the HIF2α transactivation domain is more relevant for the induction of HIF2 target genes like the amino acid carrier SLC7A5. The HIF selectivity for some genes in WT8 cells is conserved in Vhl-deficient lung and liver tissue, whereas other genes like Glut1 (Slc2a1) behave distinctly in these tissues. Therefore the relative contribution of the DNA binding/heterodimerization and transactivation domains for HIF target selectivity can be different when comparing HIF1α or HIF2α isoforms, and that HIF target gene specificity is conserved in human and mouse cells for some of the genes analyzed.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Ativação Transcricional
8.
Basic Res Cardiol ; 111(1): 7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26667317

RESUMO

Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.


Assuntos
Doenças Cardiovasculares , Pesquisa Translacional Biomédica , Animais , Humanos
9.
Basic Res Cardiol ; 111(6): 69, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27743118

RESUMO

In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.


Assuntos
Cardiologia/tendências , Doenças Cardiovasculares , Nanomedicina Teranóstica/tendências , Animais , Cardiologia/métodos , Humanos
10.
Br J Haematol ; 168(3): 429-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25283956

RESUMO

Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR by Western blot, immunoprecipitation, immunofluorescence, flow cytometry and immunohistochemistry in cell lines and clinical material. Widespread availability of these antibodies should enable the research community to gain a better understanding of the role of EPOR in cancer, and eventually to distinguish patients who can be treated safely by rHuEPO from those at increased risk from treatment.


Assuntos
Anticorpos Monoclonais/biossíntese , Proteínas de Neoplasias/imunologia , Receptores da Eritropoetina/imunologia , Sequência de Aminoácidos , Animais , Técnicas de Química Sintética/métodos , Citometria de Fluxo/métodos , Imunofluorescência , Inativação Gênica , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ratos , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Medição de Risco/métodos , Terminologia como Assunto , Células Tumorais Cultivadas/metabolismo
11.
Cell Rep ; 43(4): 114103, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607920

RESUMO

Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.


Assuntos
Proliferação de Células , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , NAD , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos
12.
Cancer Cell ; 8(2): 131-41, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16098466

RESUMO

The hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha are activated in hypoxic tumor regions. However, their role in tumorigenesis remains controversial, as tumor growth promoter and suppressor activities have been ascribed to HIF-1alpha, while the role of HIF-2alpha remains largely unknown. Here, we show that overexpression of HIF-2alpha in rat glioma tumors enhances angiogenesis but reduces growth of these tumors, in part by increasing tumor cell apoptosis. Moreover, siRNA knockdown of HIF-2alpha reduced apoptosis in hypoxic human malignant glioblastoma cells. Furthermore, inhibition of HIF by overexpression of a dominant-negative HIF transgene in glioma cells or HIF-2alpha deficiency in teratomas reduced vascularization but accelerated growth of these tumor types. These findings urge careful consideration of using HIF inhibitors as cancer therapeutic strategies.


Assuntos
Glioma/irrigação sanguínea , Neovascularização Patológica , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Neoplasias Neuroepiteliomatosas/irrigação sanguínea , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Interferente Pequeno/genética , Ratos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ativação Transcricional , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
13.
J Cereb Blood Flow Metab ; 43(1): 44-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929074

RESUMO

A central response to insufficient cerebral oxygen delivery is a profound reprograming of metabolism, which is mainly regulated by the Hypoxia Inducible Factor (HIF). Among other responses, HIF induces the expression of the atypical mitochondrial subunit NDUFA4L2. Surprisingly, NDUFA4L2 is constitutively expressed in the brain in non-hypoxic conditions. Analysis of publicly available single cell transcriptomic (scRNA-seq) data sets coupled with high-resolution multiplexed fluorescence RNA in situ hybridization (RNA F.I.S.H.) revealed that in the murine and human brain NDUFA4L2 is exclusively expressed in mural cells with the highest levels found in pericytes and declining along the arteriole-arterial smooth muscle cell axis. This pattern was mirrored by COX4I2, another atypical mitochondrial subunit. High NDUFA4L2 expression was also observed in human brain pericytes in vitro, decreasing when pericytes are muscularized and further induced by HIF stabilization in a PHD2/PHD3 dependent manner. In vivo, Vhl conditional inactivation in pericyte targeting Ng2-cre transgenic mice dramatically induced NDUFA4L2 expression. Finally NDUFA4L2 inactivation in pericytes increased oxygen consumption and therefore the degree of HIF pathway induction in hypoxia. In conclusion our work reveals that NDUFA4L2 together with COX4I2 is a key hypoxic-induced metabolic marker constitutively expressed in pericytes coupling mitochondrial oxygen consumption and cellular hypoxia response.


Assuntos
Hipóxia , RNA , Animais , Humanos , Camundongos , Hipóxia/genética
14.
iScience ; 26(1): 105739, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582828

RESUMO

Inhibition of the heterodimeric amino acid carrier SLC7A5/SLC3A2 (LAT1/CD98) has been widely studied in tumor biology but its role in physiological conditions remains largely unknown. Here we show that the SLC7A5/SLC3A2 heterodimer is constitutively present at different stages of erythroid differentiation but absent in mature erythrocytes. Administration of erythropoietin (EPO) further induces SLC7A5/SLC3A2 expression in circulating reticulocytes, as it also occurs in anemic conditions. Although Slc7a5 gene inactivation in the erythrocyte lineage does not compromise the total number of circulating red blood cells (RBCs), their size and hemoglobin content are significantly reduced accompanied by a diminished erythroblast mTORC1 activity. Furthermore circulating Slc7a5-deficient reticulocytes are characterized by lower transferrin receptor (CD71) expression as well as mitochondrial activity, suggesting a premature transition to mature RBCs. These data reveal that SLC7A5/SLC3A2 ensures adequate maturation of reticulocytes as well as the proper size and hemoglobin content of circulating RBCs.

15.
Cell Rep ; 42(12): 113508, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38019650

RESUMO

Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.


Assuntos
Colite , Interleucinas , Camundongos , Animais , Interleucinas/genética , Interleucinas/metabolismo , Imunidade Inata , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos/metabolismo , Interleucina-18 , Inflamação , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
16.
Crit Rev Immunol ; 31(1): 1-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21395507

RESUMO

Hypoxia inducible factors (HIF1 and HIF2) have emerged as central regulators of the activity of myeloid cells at inflammatory sites where O(2) is frequently limited. Novel insights in the field have revealed that the expression of HIFs by myeloid cells is not exclusively induced by hypoxia but also in response to central inflammatory mediators independently of O(2) shortage. This has substantially elevated the biological significance of HIFs in the context of inflammatory diseases. As a consequence, the loss of HIF1 or HIF2 in myeloid cells specifically compro-mises some of the processes driven by myeloid cells, such as bactericidal activity and myeloid invasion, as well as inflammation-associated detrimental consequences.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fator 1 Induzível por Hipóxia/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Animais , Humanos , Inflamação/tratamento farmacológico , Células Mieloides/citologia , Oxigênio/metabolismo
17.
J Immunol ; 185(1): 605-14, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20498354

RESUMO

Macrophages play a relevant role in innate and adaptive immunity depending on the balance of the stimuli received. From an analytical and functional point of view, macrophage stimulation can be segregated into three main modes, as follows: innate, classic, and alternative pathways. These differential activations result in the expression of specific sets of genes involved in the release of pro- or anti-inflammatory stimuli. In the present work, we have analyzed whether specific metabolic patterns depend on the signaling pathway activated. A [1,2-(13)C(2)]glucose tracer-based metabolomics approach has been used to characterize the metabolic flux distributions in macrophages stimulated through the classic, innate, and alternative pathways. Using this methodology combined with mass isotopomer distribution analysis of the new formed metabolites, the data show that activated macrophages are essentially glycolytic cells, and a clear cutoff between the classic/innate activation and the alternative pathway exists. Interestingly, macrophage activation through LPS/IFN-gamma or TLR-2, -3, -4, and -9 results in similar flux distribution patterns regardless of the pathway activated. However, stimulation through the alternative pathway has minor metabolic effects. The molecular basis of the differences between these two types of behavior involves a switch in the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) from the liver type-PFK2 to the more active ubiquitous PFK2 isoenzyme, which responds to Hif-1alpha activation and increases fructose-2,6-bisphosphate concentration and the glycolytic flux. However, using macrophages targeted for Hif-1alpha, the switch of PFK2 isoenzymes still occurs in LPS/IFN-gamma-activated macrophages, suggesting that this pathway regulates ubiquitous PFK2 expression through Hif-1alpha-independent mechanisms.


Assuntos
Imunidade Inata , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Fosfofrutoquinase-2/metabolismo , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Perfilação da Expressão Gênica , Glicólise/genética , Glicólise/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunidade Inata/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Ativação de Macrófagos/genética , Macrófagos Peritoneais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfofrutoquinase-2/fisiologia , Transdução de Sinais/genética , Especificidade por Substrato/genética , Especificidade por Substrato/imunologia
18.
Biomed Pharmacother ; 156: 113972, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411648

RESUMO

OBJECTIVE: To investigate the potential role of EGFR, ErbBs receptors and neuregulins in human adipose tissue physiology in obesity. METHODS: Gene expression analysis in human subcutaneous (SAT) and visceral (VAT) adipose tissue in three independent cohorts [two cross-sectional (N = 150, N = 87) and one longitudinal (n = 25)], and in vitro gene knockdown and overexpression experiments were performed. RESULTS: While both SAT and VAT ERBB2 and ERBB4 mRNA increased in obesity, SAT EGFR mRNA was negatively correlated with insulin resistance, but did not change in obesity. Of note, both SAT and VAT EGFR mRNA were significantly associated with adipogenesis and increased during human adipocyte differentiation. In vitro experiments revealed that EGFR, but not ERBB2 and ERBB4, gene knockdown in preadipocytes and in fully differentiated human adipocytes resulted in decreased expression of adipogenic-related genes. ERBB2 gene knockdown also reduced gene expression of fatty acid synthase in fully differentiated adipocytes. In addition, neuregulin 2 (NRG2) mRNA was associated with expression of adipogenic genes in human adipose tissue and adipocytes, and its overexpression increased expression of EGFR and relevant adipogenic genes. CONCLUSIONS: This study demonstrates the association between adipose tissue ERBB2 and obesity, confirms the relevance of EGFR on human adipogenesis, and suggests a possible adipogenic role of NRG2.


Assuntos
Adipócitos , Receptores ErbB , Neurregulinas , Obesidade , Receptor ErbB-2 , Receptor ErbB-4 , Humanos , Tecido Adiposo , Estudos Transversais , Receptores ErbB/metabolismo , Neurregulinas/metabolismo , Obesidade/metabolismo , RNA Mensageiro , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo
19.
Front Oncol ; 12: 976961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052260

RESUMO

Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.

20.
Front Physiol ; 13: 950791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187779

RESUMO

Neuregulin 4 (NRG4) has been described to improve metabolic disturbances linked to obesity status in rodent models. The findings in humans are controversial. We aimed to investigate circulating NRG4 in association with insulin action in humans and the possible mechanisms involved. Insulin sensitivity (euglycemic hyperinsulinemic clamp) and serum NRG4 concentration (ELISA) were analysed in subjects with a wide range of adiposity (n = 89). In vitro experiments with human HepG2 cell line were also performed. Serum NRG4 was negatively correlated with insulin sensitivity (r = -0.25, p = 0.02) and positively with the inflammatory marker high-sensitivity C reative protein (hsCRP). In fact, multivariant linear regression analyses showed that insulin sensitivity contributed to BMI-, age-, sex-, and hsCRP-adjusted 7.2% of the variance in serum NRG4 (p = 0.01). No significant associations were found with adiposity measures (BMI, waist circumference or fat mass), plasma lipids (HDL-, LDL-cholesterol, or fasting triglycerides) or markers of liver injury. Cultured hepatocyte HepG2 treated with human recombinant NRG4 had an impact on hepatocyte metabolism, leading to decreased gluconeogenic- and mitochondrial biogenesis-related gene expression, and reduced mitochondrial respiration, without effects on expression of lipid metabolism-related genes. Similar but more pronounced effects were found after neuregulin 1 administration. In conclusion, sustained higher serum levels of neuregulin-4, observed in insulin resistant patients may have deleterious effects on metabolic and mitochondrial function in hepatocytes. However, findings from in vitro experiments should be confirmed in human primary hepatocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA