Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microb Pathog ; 174: 105930, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36496059

RESUMO

Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.


Assuntos
Brucella , Mariposas , Animais , Camundongos , Mariposas/microbiologia , Lipopolissacarídeos , Larva/microbiologia , Interações Hospedeiro-Patógeno , Mamíferos
2.
Am J Hum Biol ; : e24023, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009939

RESUMO

OBJECTIVES: The proprotein convertase subtilisin/Kexin type 1 gene (PCSK1) is implicated in hypothalamic appetite control. Several studies have addressed the relationship between PCSK1 polymorphisms and obesity, although conflicting results were observed. We tested the potential association of four PCSK1 variants with the risk of overweight/obesity and related variables in Portuguese children. METHODS: This is a case-control study, where four PCSK1 variants, rs6230 (c.-101T>C), rs6232 (p.N221D), rs6235 (p.S690T), and rs3811942 (c.*265T>C), were analyzed in Portuguese children (aged 5-13 years-old). Anthropometric measures were objectively collected and used to provide weight-for-age, height-for-age, and body mass index (BMI) for age. The indices generated were compared to standard reference values of WHO to obtain the corresponding Z-scores. RESULTS: Logistic regression, in the dominant model, revealed no significant associations between the four individual PCSK1 variants and the risk of overweight/obesity in the total population. However, stratifying the sample by sex, a marginally significant association was found between the rs6235 minor C-allele and increased overweight/obesity in boys (n = 345) (OR 1.55 [1.01-2.38] p = .044), but not in girls (n = 340) (OR 0.73 [0.46-1.14] p = .169). Consistently, boys with genotype GG presented lower BMI Z-score (0.62) when compared to those with the genotypes GC + CC (1.04). Testing for different effects in males versus females, a significant interaction was found between the rs6235 polymorphism and sex for BMI Z-score (p = .025). CONCLUSIONS: Results of this study suggest for a sex-differentiated association between PCSK1 rs6235 and overweight/ obesity in Portuguese children.

3.
Vet Res ; 53(1): 16, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236406

RESUMO

Brucella melitensis and Brucella ovis are gram-negative pathogens of sheep that cause severe economic losses and, although B. ovis is non-zoonotic, B. melitensis is the main cause of human brucellosis. B. melitensis carries a smooth (S) lipopolysaccharide (LPS) with an N-formyl-perosamine O-polysaccharide (O-PS) that is absent in the rough LPS of B. ovis. Their control and eradication require vaccination, but B. melitensis Rev 1, the only vaccine available, triggers anti-O-PS antibodies that interfere in the S-brucellae serodiagnosis. Since eradication and serological surveillance of the zoonotic species are priorities, Rev 1 is banned once B. melitensis is eradicated or where it never existed, hampering B. ovis control and eradication. To develop a B. ovis specific vaccine, we investigated three Brucella live vaccine candidates lacking N-formyl-perosamine O-PS: Bov::CAΔwadB (CO2-independent B. ovis with truncated LPS core oligosaccharide); Rev1::wbdRΔwbkC (carrying N-acetylated O-PS); and H38ΔwbkF (B. melitensis rough mutant with intact LPS core). After confirming their attenuation and protection against B. ovis in mice, were tested in rams for efficacy. H38ΔwbkF yielded similar protection to Rev 1 against B. ovis but Bov::CAΔwadB and Rev1::wbdRΔwbkC conferred no or poor protection, respectively. All H38ΔwbkF vaccinated rams developed a protracted antibody response in ELISA and immunoprecipitation B. ovis diagnostic tests. In contrast, all remained negative in Rose Bengal and complement fixation tests used routinely for B. melitensis diagnosis, though some became positive in S-LPS ELISA owing to LPS core epitope reactivity. Thus, H38ΔwbkF is an interesting candidate for the immunoprophylaxis of B. ovis in B. melitensis-free areas.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucella ovis , Brucelose , Doenças dos Roedores , Doenças dos Ovinos , Animais , Anticorpos Antibacterianos , Brucella melitensis/genética , Brucella ovis/genética , Brucelose/prevenção & controle , Brucelose/veterinária , Masculino , Camundongos , Ovinos , Doenças dos Ovinos/prevenção & controle
4.
Vet Res ; 51(1): 92, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703299

RESUMO

Brucella is a genus of gram-negative bacteria that cause brucellosis. B. abortus and B. melitensis infect domestic ruminants while B. suis (biovars 1-3) infect swine, and all these bacteria but B. suis biovar 2 are zoonotic. Live attenuated B. abortus S19 and B. melitensis Rev1 are effective vaccines in domestic ruminants, though both can infect humans. However, there is no swine brucellosis vaccine. Here, we investigated the potential use as vaccines of B. suis biovar 2 rough (R) lipopolysaccharide (LPS) mutants totally lacking O-chain (Bs2ΔwbkF) or only producing internal O-chain precursors (Bs2Δwzm) and mutants with a smooth (S) LPS defective in the core lateral branch (Bs2ΔwadB and Bs2ΔwadD). We also investigated mutants in the pyruvate phosphate dikinase (Bs2ΔppdK) and phosphoenolpyruvate carboxykinase (Bs2ΔpckA) genes encoding enzymes bridging phosphoenolpyruvate and the tricarboxylic acid cycle. When tested in the OIE mouse model at the recommended R or S vaccine doses (108 and 105 CFU, respectively), CFU/spleen of all LPS mutants were reduced with respect to the wild type and decreased faster for the R than for the S mutants. At those doses, protection against B. suis was similar for Bs2ΔwbkF, Bs2Δwzm, Bs2ΔwadB and the Rev1 control (105 CFU). As described before for B. abortus, B. suis biovar 2 carried a disabled pckA so that a double mutant Bs2ΔppdKΔpckA had the same metabolic phenotype as Bs2ΔppdK and ppdK mutation was enough to generate attenuation. At 105 CFU, Bs2ΔppdK also conferred the same protection as Rev1. As compared to other B. suis vaccine candidates described before, the mutants described here simultaneously carry irreversible deletions easy to identify as vaccine markers, lack antibiotic-resistance markers and were obtained in a non-zoonotic background. Since R vaccines should not elicit antibodies to the S-LPS and wzm mutants carry immunogenic O-chain precursors and did not improve Bs2ΔwbkF, the latter seems a better R vaccine candidate than Bs2Δwzm. However, taking into account that all R vaccines interfere in ELISA and other widely used assays, whether Bs2ΔwbkF is advantageous over Bs2ΔwadB or Bs2ΔppdK requires experiments in the natural host.


Assuntos
Vacina contra Brucelose/imunologia , Brucella suis/imunologia , Brucelose/veterinária , Doenças dos Suínos/prevenção & controle , Animais , Brucelose/prevenção & controle , Brucelose/virologia , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Vacinas Atenuadas/imunologia
5.
Vet Res ; 51(1): 13, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32070427

RESUMO

In the original publication of this article [1], the corresponding author points out Pilar M. Muñoz and Raquel Conde­Alvarez contributed equally to this work.

6.
Vet Res ; 50(1): 95, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730501

RESUMO

Sheep brucellosis is a worldwide extended disease caused by B. melitensis and B. ovis, two species respectively carrying smooth or rough lipopolysaccharide. Vaccine B. melitensis Rev1 is used against B. melitensis and B. ovis but induces an anti-smooth-lipopolysaccharide response interfering with B. melitensis serodiagnosis, which precludes its use against B. ovis where B. melitensis is absent. In mice, Rev1 deleted in wbkC (Brucella lipopolysaccharide formyl-transferase) and carrying wbdR (E. coli acetyl-transferase) triggered antibodies that could be differentiated from those evoked by wild-type strains, was comparatively attenuated and protected against B. ovis, suggesting its potential as a B. ovis vaccine.


Assuntos
Amino Açúcares/farmacologia , Vacina contra Brucelose/farmacologia , Brucella ovis/imunologia , Brucelose/veterinária , Polissacarídeos/farmacologia , Vacinas Atenuadas/farmacologia , Animais , Brucelose/prevenção & controle , Feminino , Camundongos , Camundongos Endogâmicos BALB C
7.
Nat Genet ; 35(4): 313-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634649

RESUMO

We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Oligopeptídeos/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Feminino , Ligação Genética , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/classificação , Deficiência Intelectual Ligada ao Cromossomo X/etiologia , Dados de Sequência Molecular , Proteínas Nucleares/genética , Linhagem , Síndrome
8.
Microorganisms ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512814

RESUMO

Microorganisms rule the functioning of our planet and each one of the individual macroscopic living creature. Nevertheless, microbial activity and growth status have always been challenging tasks to determine both in situ and in vivo. Microbial activity is generally related to growth, and the growth rate is a result of the availability of nutrients under adequate or adverse conditions faced by microbial cells in a changing environment. Most studies on microorganisms have been carried out under optimum or near-optimum growth conditions, but scarce information is available about microorganisms at slow-growing states (i.e., near-zero growth and maintenance metabolism). This study aims to better understand microorganisms under growth-limiting conditions. This is expected to provide new perspectives on the functions and relevance of the microbial world. This is because (i) microorganisms in nature frequently face conditions of severe growth limitation, (ii) microorganisms activate singular pathways (mostly genes remaining to be functionally annotated), resulting in a broad range of secondary metabolites, and (iii) the response of microorganisms to slow-growth conditions remains to be understood, including persistence strategies, gene expression, and cell differentiation both within clonal populations and due to the complexity of the environment.

9.
Front Microbiol ; 12: 614243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421831

RESUMO

The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.

11.
Front Vet Sci ; 6: 175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231665

RESUMO

Members of the genus Brucella cluster in two phylogenetic groups: classical and non-classical species. The former group is composed of Brucella species that cause disease in mammals, including humans. A Brucella species, labeled as Brucella sp. BCCN84.3, was isolated from the testes of a Saint Bernard dog suffering orchiepididymitis, in Costa Rica. Following standard microbiological methods, the bacterium was first defined as "Brucella melitensis biovar 2." Further molecular typing, identified the strain as an atypical "Brucella suis." Distinctive Brucella sp. BCCN84.3 markers, absent in other Brucella species and strains, were revealed by fatty acid methyl ester analysis, high resolution melting PCR and omp25 and omp2a/omp2b gene diversity. Analysis of multiple loci variable number of tandem repeats and whole genome sequencing demonstrated that this isolate was different from the currently described Brucella species. The smooth Brucella sp. BCCN84.3 clusters together with the classical Brucella clade and displays all the genes required for virulence. Brucella sp. BCCN84.3 is a species nova taxonomical entity displaying pathogenicity; therefore, relevant for differential diagnoses in the context of brucellosis. Considering the debate on the Brucella species concept, there is a need to describe the extant taxonomical entities of these pathogens in order to understand the dispersion and evolution.

12.
Front Microbiol ; 8: 2657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375522

RESUMO

The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL ß-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA