Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217627

RESUMO

Drosophila melanogaster has been extensively used as a model system to study ionizing radiation and chemical-induced mutagenesis, double-strand break repair, and recombination. However, there are only limited studies on nucleotide excision repair in this important model organism. An early study reported that Drosophila lacks the transcription-coupled repair (TCR) form of nucleotide excision repair. This conclusion was seemingly supported by the Drosophila genome sequencing project, which revealed that Drosophila lacks a homolog to CSB, which is known to be required for TCR in mammals and yeasts. However, by using excision repair sequencing (XR-seq) genome-wide repair mapping technology, we recently found that the Drosophila S2 cell line performs TCR comparable to human cells. Here, we have extended this work to Drosophila at all its developmental stages. We find TCR takes place throughout the life cycle of the organism. Moreover, we find that in contrast to humans and other multicellular organisms previously studied, the XPC repair factor is required for both global and transcription-coupled repair in Drosophila.


Assuntos
Reparo do DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transcrição Gênica , Animais , Linhagem Celular , Cisplatino/farmacologia , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Raios Ultravioleta
2.
Cancer Sci ; 113(5): 1885-1887, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35132733

RESUMO

The Quantikine® ELISA detects tissue factor in cell lysates and culture supernatants containing extracellular vesicles from tissue factor-expressing cell lines but does not detect low levels of tissue factor antigen in plasma.


Assuntos
Vesículas Extracelulares , Neoplasias Pancreáticas , Tromboembolia , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pancreáticas/complicações , Tromboplastina/metabolismo , Neoplasias Pancreáticas
3.
Thromb Res ; 237: 23-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547690

RESUMO

INTRODUCTION: Mucins released from epithelial tumors have been proposed to play a role in cancer-associated thrombosis. Mucin1 (MUC1) is a transmembrane mucin that is overexpressed in a variety of human malignancies, including breast and pancreatic cancer. We analyzed the association of MUC1 and venous thrombosis in a mouse tumor model and in patients with cancer. MATERIALS AND METHODS: We used a human pancreatic cancer cell line HPAF-II that expresses a high level of MUC1. We grew HPAF-II tumors in the pancreas of Crl:NU-Foxn1nu male mice. MUC1 in plasma and extracellular vesicles (EVs) isolated from plasma was measured using an enzyme-linked immunosorbent assay. MUC1 in EVs and venous thrombi from tumor-bearing mice was assessed by western blotting. We measured MUC1 in plasma from healthy controls and patients with stomach, colorectal or pancreatic cancer with or without venous thromboembolism. RESULTS AND DISCUSSION: MUC1 was detected in the plasma of mice bearing HPAF-II tumors and was associated with EVs. MUC1 was present in venous thrombi from mice bearing HFAP-II tumors. Recombinant MUC1 did not induce platelet aggregation. Levels of MUC1 were higher in patients with pancreatic cancer compared with healthy controls. In contrast to the mouse model, MUC1 was present in EV-free plasma in samples from healthy controls and patients with cancer. There was no significant difference in the levels of MUC1 in cancer patients with or without VTE. Our data did not find any evidence that MUC1 contributed to VTE in patients with cancer.


Assuntos
Mucina-1 , Trombose Venosa , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Mucina-1/sangue , Mucina-1/metabolismo , Neoplasias/complicações , Neoplasias/sangue , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Trombose Venosa/sangue , Trombose Venosa/metabolismo , Trombose Venosa/patologia
4.
J Thromb Haemost ; 22(7): 1984-1996, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574862

RESUMO

BACKGROUND: Coagulopathy and associated bleeding and deep vein thrombosis (DVT) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. OBJECTIVES: To evaluate the associations between biomarker levels and bleeding and DVT in acute leukemia patients. METHODS: We examined plasma levels of activators, inhibitors, and biomarkers of the coagulation and fibrinolytic pathways in patients aged ≥18 years with newly diagnosed acute leukemia compared with those of normal controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and DVT in acute leukemia patients. The study included 358 patients with acute leukemia (29 with acute promyelocytic leukemia [APL], 253 with non-APL acute myeloid leukemia, and 76 with acute lymphoblastic leukemia) and 30 normal controls. RESULTS: Patients with acute leukemia had higher levels of extracellular vesicle tissue factor (EVTF) activity, phosphatidylserine-positive extracellular vesicles, plasminogen activator inhibitor-1, plasmin-antiplasmin complexes, and cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared with normal controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among acute leukemia patients. There were 41 bleeding and 23 DVT events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (subdistribution hazard ratio, 2.30; 95% CI, 0.99-5.31), whereas high levels of plasminogen activator inhibitor-1 were associated with increased risk of DVT (subdistribution hazard ratio, 3.00; 95% CI, 0.95-9.47) in these patients. CONCLUSION: Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and DVT.


Assuntos
Biomarcadores , Coagulação Sanguínea , Hemorragia , Leucemia Mieloide Aguda , Tromboembolia Venosa , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Hemorragia/sangue , Hemorragia/diagnóstico , Tromboembolia Venosa/sangue , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiologia , Biomarcadores/sangue , Estudos de Casos e Controles , Idoso , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Fatores de Risco , Leucemia Promielocítica Aguda/sangue , Leucemia Promielocítica Aguda/complicações , Trombose Venosa/sangue , Trombose Venosa/diagnóstico , Trombose Venosa/etiologia , Histonas/sangue , Inibidor 1 de Ativador de Plasminogênio/sangue , Tromboplastina/metabolismo , Tromboplastina/análise , Adulto Jovem , Fosfatidilserinas/sangue
5.
Res Pract Thromb Haemost ; 7(3): 100133, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37275179

RESUMO

Background: Under pathological conditions, tissue factor (TF)-positive extracellular vesicles (EVs) are released into the circulation and activate coagulation. Therefore, it is important to identify methods that accurately quantitate levels of TF in plasma. Enzyme-linked immunosorbent assays (ELISAs) are a fast and simple method to quantitate levels of proteins. However, there are several specific challenges with measuring TF antigen in plasma including its low concentration and the complexity of plasma. Objectives: We aimed to evaluate the ability of 4 commercial ELISAs to measure TF in human plasma. Methods: We determined the ability of 4 commercial ELISAs (Imubind, Quantikine, Human SimpleStep, and CD142 Human) to detect recombinant human TF (Innovin) (12.5-100 pg/mL), TF-positive EVs isolated from the culture supernatant from a human pancreatic cancer cell line (57 pg/mL), TF in plasma containing low levels of EV TF activity (1.2-2.6 pg/mL) from lipopolysaccharide-stimulated whole blood, and plasma containing high levels of EV TF activity (151-696 pg/mL) from patients with acute leukemia. Results: The CD142 Human ELISA could not detect recombinant TF. Imubind and Quantikine but not Human SimpleStep detected recombinant TF spiked into plasma and TF-positive EVs isolated from the culture supernatant of a human pancreatic cancer cell line. Quantikine and Imubind could not detect low levels of TF in plasma from lipopolysaccharide-stimulated whole blood. However, Quantikine but not Imubind detected TF in plasma from acute leukemia patients with high levels of EV TF activity. Conclusion: Our results indicate that commercial ELISAs have different abilities to detect TF. Quantikine and Imubind could not detect low levels of TF in plasma, but Quantikine detected TF in plasma with high levels of TF.

6.
Blood Adv ; 7(18): 5458-5469, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450381

RESUMO

Acute promyelocytic leukemia (APL) is associated with a high risk of bleeding and thrombosis. APL patients have an activated coagulation system, hyperfibrinolysis, and thrombocytopenia. APL cells express tissue factor (TF), a receptor and cofactor for factor VII/VIIa. This study had 2 goals. Firstly, we measured biomarkers of coagulation and fibrinolysis activation as well as platelet counts and bleeding in both mouse xenograft and allograft models of APL. Secondly, we determined the effect of inhibiting TF on the activation of coagulation in these models. We observed increased levels of plasma thrombin-antithrombin complexes (TAT), D-dimer, and plasmin-antiplasmin complexes, reduced platelet counts, and increased tail bleeding in both mouse models of APL. Fibrinogen levels decreased in the xenograft model but not in the allograft model. In contrast, the red blood cell count decreased in the allograft model but not in the xenograft model. Inhibition of APL-derived human TF with an anti-human TF monoclonal antibody reduced the level of TAT, increased platelet count, and normalized tail bleeding in a xenograft model. Inhibition of all sources of TF (APL cells and host cells) in the allograft model with a rat anti-mouse TF monoclonal antibody decreased the levels of TAT but did not affect the platelet count. Our study demonstrates that TF plays a central role in the activation of coagulation in both the xenograft and allograft mouse models of APL. These APL mouse models can be used to investigate the mechanisms of coagulopathy and thrombocytopenia in APL.


Assuntos
Transtornos da Coagulação Sanguínea , Leucemia Promielocítica Aguda , Trombocitopenia , Humanos , Animais , Ratos , Tromboplastina , Coagulação Sanguínea , Hemorragia/etiologia , Trombocitopenia/complicações , Anticorpos Monoclonais
7.
Res Pract Thromb Haemost ; 7(3): 100124, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37012986

RESUMO

Background: Circulating procoagulant extracellular vesicles (EVs) are increased in diseases, such as cancer, sepsis, and COVID-19. EV tissue factor (TF) activity is associated with disseminated intravascular coagulation in sepsis and venous thrombosis in patients with pancreatic cancer and COVID-19. EVs are commonly isolated by centrifugation at ∼20,000 g. Objectives: In this study, we analyzed the TF activity of 2 EV populations enriched for large and small EVs in patients with either sepsis, pancreatic cancer, or COVID-19. Methods: EVs were isolated from plasma by sequential centrifugation at 20,000 g (large EVs, LEVs) and then 100,000 g (small EVs, SEVs). We analyzed EVs from plasma prepared from whole blood samples from healthy individuals with or without lipopolysaccharide (LPS) stimulation as well as EVs from plasma samples from patients with either sepsis, pancreatic cancer, or COVID-19. TF-dependent (EV-TF activity) and TF-independent factor Xa (FXa) generation of the EVs was measured. Results: LPS increased EV-TF activity in LEVs but not SEVs. Similarly, in 2 patients with sepsis who had EV-TF activity above the background of the assay we observed EV-TF activity in LEVs but not SEVs. Patients with pancreatic cancer or COVID-19 had circulating EV-TF activity in both LEVs and SEVs. Conclusion: We recommend that EVs are isolated from plasma from patients by centrifugation at 100,000 g rather than 20,000 g to obtain a more accurate measure of levels of circulating EV-TF activity.

8.
medRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905148

RESUMO

Background: Coagulopathy and associated bleeding and venous thromboembolism (VTE) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. Objectives: To evaluate the associations between biomarker levels and bleeding and VTE in acute leukemia patients. Patients/Method: We examined plasma levels of activators, inhibitors and biomarkers of the coagulation and fibrinolytic pathways in patients ≥18 years with newly diagnosed acute leukemia compared to healthy controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and VTE in acute leukemia patients. The study included 358 patients with acute leukemia (29 acute promyelocytic leukemia [APL], 253 non-APL acute myeloid leukemia [AML] and 76 acute lymphoblastic leukemia [ALL]), and 30 healthy controls. Results: Patients with acute leukemia had higher levels of extracellular vesicle (EV) tissue factor (TF) activity, phosphatidylserine-positive EVs, plasminogen activator inhibitor-1 (PAI-1), plasmin-antiplasmin complexes, cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared to healthy controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among the acute leukemia patients. There were 41 bleeding and 37 VTE events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (sHR 2.30, 95%CI 0.99-5.31) whereas high PAI-1 was associated with increased risk of VTE (sHR 3.79, 95%CI 1.40-10.28) in these patients. Conclusions: Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and VTE.

9.
Res Pract Thromb Haemost ; 6(2): e12677, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35284777

RESUMO

Background: Circulating tissue factor (TF)-expressing extracellular vesicles (EVs) are associated with thrombosis in several diseases, such as coronavirus disease 2019 (COVID-19). Activity assays have higher sensitivity and specificity compared to antigen assays for measuring TF+ EVs in plasma. The MACSPlex Exosome Kit is designed to detect 37 exosomal surface epitopes, including TF, on EVs in plasma using various fluorescently labeled beads. The different EV-bead complexes are detected by flow cytometry. A recent study used the MACSPlex Exosome Kit to measure levels of TF+ EVs in serum from patients with COVID-19. Objectives: To evaluate the ability of the MACSPlex Exosome Kit to detect TF on EVs in plasma. Methods: We measured levels of TF+ EVs isolated from plasma with or without TF detected using our in-house EVTF activity assay and the MACSPlex Exosome Kit. Results: The MACSPlex Exosome Kit gave a very low TF antigen signal (TF bead signal) compared to platelet-derived CD41b+ EVs, which was used as a control. Lipopolysaccharide (LPS) increased levels of EVTF activity but not TF bead signal in four donors. Inhibition of TF reduced levels of EVTF activity but did not affect the TF bead signal in EVs isolated from plasma from LPS-treated blood. Finally, we found no correlation between levels of EVTF activity and TF bead signal in EVs isolated from plasma from ovarian cancer patients (r = .16, P = .62). Conclusion: Our data suggest that the MACSPlex Exosome Kit gives a nonspecific signal for TF and does not have the sensitivity to detect TF+ EVs in plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA