Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373057

RESUMO

Dimethyl fumarate (DMF) is a well-characterized molecule that exhibits immuno-modulatory, anti-inflammatory, and antioxidant properties and that is currently approved for the treatment of psoriasis and multiple sclerosis. Due to its Nrf2-dependent and independent mechanisms of action, DMF has a therapeutic potential much broader than expected. In this comprehensive review, we discuss the state-of-the-art and future perspectives regarding the potential repurposing of DMF in the context of chronic inflammatory diseases of the intestine, such as inflammatory bowel disorders (i.e., Crohn's disease and ulcerative colitis) and celiac disease. DMF's mechanisms of action, as well as an exhaustive analysis of the in vitro/in vivo evidence of its beneficial effects on the intestine and the gut microbiota, together with observational studies on multiple sclerosis patients, are here reported. Based on the collected evidence, we highlight the new potential applications of this molecule in the context of inflammatory and immune-mediated intestinal diseases.


Assuntos
Colite Ulcerativa , Esclerose Múltipla , Humanos , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Intestinos
2.
Front Cell Neurosci ; 17: 1170309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153631

RESUMO

Enteric glial cells (EGCs), the major components of the enteric nervous system (ENS), are implicated in the maintenance of gut homeostasis, thereby leading to severe pathological conditions when impaired. However, due to technical difficulties associated with EGCs isolation and cell culture maintenance that results in a lack of valuable in vitro models, their roles in physiological and pathological contexts have been poorly investigated so far. To this aim, we developed for the first time, a human immortalized EGC line (referred as ClK clone) through a validated lentiviral transgene protocol. As a result, ClK phenotypic glial features were confirmed by morphological and molecular evaluations, also providing the consensus karyotype and finely mapping the chromosomal rearrangements as well as HLA-related genotypes. Lastly, we investigated the ATP- and acetylcholine, serotonin and glutamate neurotransmitters mediated intracellular Ca2+ signaling activation and the response of EGCs markers (GFAP, SOX10, S100ß, PLP1, and CCL2) upon inflammatory stimuli, further confirming the glial nature of the analyzed cells. Overall, this contribution provided a novel potential in vitro tool to finely characterize the EGCs behavior under physiological and pathological conditions in humans.

3.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010578

RESUMO

Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.


Assuntos
Astrocitoma , Exossomos , Fotoquimioterapia , Aminoácidos , Animais , Astrocitoma/tratamento farmacológico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ratos , Rosa Bengala/química , Rosa Bengala/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA