RESUMO
In Alzheimer's disease (AD), transgenic mouse models have established links between abnormalities in the retina and those in the brain. APPNL-F/NL-F is a murine, humanized AD model that replicates several pathological features observed in patients with AD. Research has focused on obtaining quantitative parameters from optical coherence tomography (OCT) in AD. The aim of this study was to analyze, in a transversal case-control study using manual retinal segmentation via SD-OCT, the changes occurring in the retinal layers of the APPNL/F-NF/L AD model in comparison to C57BL/6J mice (WT) at 6, 9, 12, 15, 17, and 20 months of age. The analysis focused on retinal thickness in RNFL-GCL, IPL, INL, OPL, and ONL based on the Early Treatment Diabetic Retinopathy Study (ETDRS) sectors. Both APPNL-F/NL-F-model and WT animals exhibited thickness changes at the time points studied. While WT showed significant changes in INL, OPL, and ONL, the AD model showed changes in all retinal layers analyzed. The APPNL-F/NL-F displayed significant thickness variations in the analyzed layers except for the IPL compared to related WT. These thickness changes closely resembled those found in humans during preclinical stages, as well as during mild and moderate AD stages, making this AD model behave more similarly to the disease in humans.
Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Camundongos Transgênicos , Retina , Tomografia de Coerência Óptica , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Tomografia de Coerência Óptica/métodos , Retina/patologia , Retina/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino , Feminino , Estudos de Casos e ControlesRESUMO
Alzheimer's disease (AD) may manifest retinal changes preceding brain pathology. A transversal case-control study utilized spectral-domain OCT angiography (SD-OCTA) and Angio-Tool software 0.6a to assess retinal vascular structures and OCT for inner and outer retina thickness in the APPNL-F/NL-F AD model at 6, 9, 12, 15, 17, and 20 months old. Comparisons to age-matched wild type (WT) were performed. The analysis focused on the three vascular plexuses using AngiooTool and on retinal thickness, which was represented with the Early Treatment Diabetic Retinopathy Study (ETDRS) sectors. Compared to WT, the APPNL-F/NL-F group exhibited both vascular and structural changes as early as 6 months persisting and evolving at 15, 17, and 20 months. Significant vascular alterations, principally in the superficial vascular complex (SVC), were observed. There was a significant decrease in the vessel area and the total vessel length in SVC, intermediate, and deep capillary plexus. The inner retina in the APPNL-F/NL-F group predominantly decreased in thickness while the outer retina showed increased thickness in most analyzed time points compared to the control group. There are early vascular and structural retinal changes that precede the cognitive changes, which appear at later stages. Therefore, the natural history of the APPNL-F/NL-F model may be more similar to human AD than other transgenic models.