RESUMO
Biofilms are multicellular heterogeneous bacterial communities characterized by social-like division of labor, and remarkable robustness with respect to external stresses. Increasingly often an analogy between biofilms and arguably more complex eukaryotic tissues is being drawn. One illustrative example of where this analogy can be practically useful is the process of wound healing. While it has been extensively studied in eukaryotic tissues, the mechanism of wound healing in biofilms is virtually unexplored. Combining experiments in Bacillus subtilis bacteria, a model organism for biofilm formation, and a lattice-based theoretical model of biofilm growth, we studied how biofilms recover after macroscopic damage. We suggest that nutrient gradients and the abundance of proliferating cells are key factors augmenting wound closure. Accordingly, in the model, cell quiescence, nutrient fluxes, and biomass represented by cells and self-secreted extracellular matrix are necessary to qualitatively recapitulate the experimental results for damage repair. One of the surprising experimental findings is that residual cells, persisting in a damaged area after removal of a part of the biofilm, prominently affect the healing process. Taken together, our results outline the important roles of nutrient gradients and residual cells on biomass regrowth on macroscopic scales of the whole biofilm. The proposed combined experiment-simulation framework opens the way to further investigate the possible relation between wound healing, cell signaling and cell phenotype alternation in the local microenvironment of the wound.
Assuntos
Bacillus , Bactérias , Biofilmes , Transporte Biológico , CicatrizaçãoRESUMO
Breynia distachia is a plant of genus Breynia belonging to family Phyllanthaceae. This study was conducted to isolate and examine the anti-inflammatory attributes of the roots of Breynia distachia. Methanol extract from roots were prepared by simple maceration. For phytochemical studies, isolation, purification, structure elucidation, metal analysis, total phenolic content, and solubility test were done by chromatographic and spectroscopic techniques. Anti-inflammatory activity was evaluated by cotton pallet edema model and carrageenan paw edema model, and antioxidant potential was evaluated by DPPH, FRAP, and ABTS antioxidants assays. Metal analysis of BD.Me revealed the presence of Na > Mg > K > Mn > Fe = Zn in respective order. Four phytochemicals such as gallic acid, quercetin, sinapic acid, and p-coumaric acid are found in Breynia distachia. Quercetin is present in relatively larger quantity, and shows antioxidant activity by reducing the ferric iron to ferrous iron. Novel distachionate shows high antioxidant activity in ABTS assay by reducing reactive oxygen species. Quantitative or qualitative analysis performed by HPLC indicates the ascending peaks or presence of secondary products (metabolites) respectively. Histopathology analysis of liver, spleen, heart, and kidney was done, revealing mild inflammations in spleen and liver, and no cytotoxicity in heart and kidney. Oral administration of BD.Me and ditachionate significantly inhibits the carrageenan and cotton pellet-induced paw edema in 1st and 2nd h with (ns = p > 0.05) than control. After 3rd, 4th, 5th, and 6th h, BD.Me and ditachionate showed inhibition of paw edema in a highly significant (*** = p < 0.001) manner as compared to control. In cotton-pellet edema model, distachionate shows a %inhibition of 57.3% at a dose level of 5 mg/kg. Docking values obtained from distachionate-COX-2 complex suggest a potent inhibitor evaluated for this protein. The distachionate shows effective anti-inflammatory activity. Methanol extracts of roots showed significant lipoxygenase inhibitory activity by IC50 values of 155.7 ± 0.55 and 132.9 ± 0.33 µg/mL. Data from various in vitro and in vivo models suggest that novel distachionate isolated from Breynia distachia shows strong antioxidant and anti-inflammatory activities; it should be further studied for the exploration of its medicinal potential.
Assuntos
Antioxidantes , Malpighiales , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Carragenina/efeitos adversos , Ciclo-Oxigenase 2 , Citocinas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Ferro/efeitos adversos , Fígado , Metanol/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Quercetina/uso terapêutico , RatosRESUMO
The aims and objectives of the study were to evaluate the antiParkinson's (PD) potential of B cernua (BCE). B cernua (Poir.) Müll. Arg. (B cernua) is a member of the Phyllanthaceae family. HPLC revealed the presence of various phytochemicals. Study was conducted for 40 days. After PD induction by paraquat behavioural studies were carried out. Biochemical parameters such as DPPH, NO-scavenging, Ferrous reducing power, MDA, GSH, CAT, SOD, acetylcholinesterase (AChE), neurotransmitter estimation and TNF-α and IL-6 levels were determined. DPPH, NO-scavenging and Ferrous reducing power assays showed 78.02%, 48.05% and 71.45% inhibitions, respectively. There was significant improvement in motor functions and coordination in a dose-dependent manner (50 < 250 < 500 mg/kg) in PD rat model. Biochemical markers; SOD, CAT, GPx and GSH showed significant restoration (P < .001) while MDA showed significant decrease (P < .05). The AChE level was significantly reduced (P < .05) at 500 mg/kg while neurotransmitters were significantly improved (P < .001) in a dose-dependent fashion. The ELISA results showed significant (P < .001) down-regulation of IL-6 and TNF-α level. In conclusion, it is suggested that BCE has the potential to reduce the symptoms of PD.
RESUMO
We sequenced the metagenome of a biofilm collected near a leachate stream of the Marsberg copper mine (Germany) and reconstructed eight metagenome-assembled genomes. These genomes yield copper resistance through Cu(I) oxidation via multiple copper oxidases and extrusion through copper-exporting P-type ATPases.
RESUMO
The 16S rRNA amplicons from biofilms inhabiting rocks near various water bodies of Marsberg Copper Mine (Rhenish Massif, Germany) reveal the diversity of their microbial communities. The abundance of Chloroflexi and Cyanobacteria taxa in the biofilms near leachate streams indicated the selective enrichment of Ktedonobacteria and Oxyphotobacteria members.
RESUMO
The hydrothermal steam environment of Sasso Pisano (Italy) was selected to investigate the associated microbial community and its metabolic potential. In this context, 16S and 18S rRNA gene partial sequences of thermophilic prokaryotes and eukaryotes inhabiting hot springs and fumaroles as well as mesophilic microbes colonising soil and water were analysed by high-throughput amplicon sequencing. The eukaryotic and prokaryotic communities from hot environments clearly differ from reference microbial communities of colder soil sites, though Ktedonobacteria showed high abundances in various hot spring samples and a few soil samples. This indicates that the hydrothermal steam environments of Sasso Pisano represent not only a vast reservoir of thermophilic but also mesophilic members of this Chloroflexi class. Metabolic functional profiling revealed that the hot spring microbiome exhibits a higher capability to utilise methane and aromatic compounds and is more diverse in its sulphur and nitrogen metabolism than the mesophilic soil microbial consortium. In addition, heavy metal resistance-conferring genes were significantly more abundant in the hot spring microbiome. The eukaryotic diversity at a fumarole indicated high abundances of primary producers (unicellular red algae: Cyanidiales), consumers (Arthropoda: Collembola sp.), and endoparasite Apicomplexa (Gregarina sp.), which helps to hypothesise a simplified food web at this hot and extremely nutrient-deprived acidic environment.
RESUMO
Organic-rich laminated shales and limestones from the Monte San Giorgio (Lugano Prealps, Switzerland) are known as famous fossil lagerstätten for excellently preserved fossils from the Middle Triassic Period. The various bituminous shales from Monte San Giorgio are thermally immature and rich in diverse organic compounds, which provide unique substrates for active soil microbial communities. We selected the Cava superior beds of the Acqua del Ghiffo site for this study. To investigate its microbial structure and diversity, contig assembly, Operational Taxonomic Units (OTUs) clustering, and rarefaction analysis were performed for bacterial 16S rDNA preparations from bituminous and non-bituminous limestone strata with the MetaAmp pipeline. Principal coordinates analysis shows that the microbial communities from the bituminous strata differ significantly from limestone samples (P < 0.05 Unifrac weighted). Moreover, metagenomic tools could also be used effectively to analyze the microbial communities shift during enrichment in specific growth media. In the nutrient-rich media, one or few taxa, mainly Proteobacteria and Firmicutes, were enriched which led to the drastic diversity loss while oligotrophic media could enrich many taxa simultaneously and sustain the richness and diversity of the inoculum. Piphillin, METAGENassist and MicrobiomeAnalyst pipeline also predicted that the Monte San Giorgio bituminous shales and oligotrophic enriched microbiomes degrade complex polycyclic aromatic hydrocarbons.
Assuntos
DNA Bacteriano/genética , Firmicutes/genética , Fósseis , Microbiota , Proteobactérias/genética , Microbiologia do Solo , SuíçaRESUMO
Breast cancer represents a significant health problem because of its high prevalence. Tests like mammography, which are used abundantly for the detection of breast cancer, suffer from serious limitations. Mammography correctly detects malignancy about 80-90% of the times, failing in places when (1) the tumor is small at early stage, (2) breast tissue is dense or (3) in women of less than 40 years. Serum-based detection of biomarkers involves risk of disease transfer, along with other concerns. These techniques compromise in the early detection of breast cancer. Early detection of breast cancer is a crucial factor to enhance the survival rate of patient. Development of regular screening tests for early diagnosis of breast cancer is a challenge. This review highlights the design of a handy and household biosensor device aimed for self-screening and early diagnosis of breast cancer. The design makes use of salivary autoantibodies for specificity to develop a noninvasive procedure, breast cancer specific biomarkers for precision for the development of device, and biosensor technology for sensitivity to screen the early cases of breast cancer more efficiently.